硕士 学位 论 文

56M~806M 宽频带 Double-Conversion 混频器设计

院 系： 信息科学与工程学院
专 业： 微电子与固体电子学
姓 名： 舒 适
指导教师： 闵昊 教授
完成时间： 2004.5.30
目录

ABSTRACT ... I

摘要 ... II

引言 .. 1

1.1 通信系统的基本概念 .. 1
1.2 接收端的结构 ... 3
 1.2.1 超外差结构的接收端（Superheterodyne Receiver） 3
 1.2.2 零中频结构的接收端（Homodyne Receiver） 6
 1.2.3 镜像抑制接收器（Image-Reject Receivers） 11
1.3 设计目的 ... 15
1.4 论文提纲 ... 16

第二章 混频器的基本概念 ... 17

2.1 混频器的基本原理 ... 17
2.2 混频器的性能参数 ... 18
 2.2.1 转换增益（Conversion Gain） .. 18
 2.2.2 噪声系数（Noise Figure） ... 18
 2.2.3 线性度（Linearity） .. 19
 2.2.4 隔离度（Isolation） ... 25
 2.2.5 输入输出阻抗匹配（Input & Output matching） 25

第三章 混频器的电路结构 ... 27

3.1 混频器的基本工作原理和分类 ... 27
3.2 Active 混频器 .. 28
 3.2.1 基于平方关系（square-law）的混频器 28
 3.2.2 基于乘法器（Multiplier-Based）的混频器 30
3.3 Passive 混频器 .. 32
 3.3.1 电压混频器（Potentiometric Mixers） 32
 3.3.2 Double-balanced Mixer ... 33
 3.3.3 Subsampling Mixer ... 35

第四章 Upconversion 宽带混频器的设计 ... 37

4.1 VGA 电路的设计及仿真 .. 38
4.2 简单 Gilbert 结构混频器的设计 .. 41
4.3 宽带混频器线性度的提高 ... 46
4.4 增益，IIP3 和噪声系数的简单计算 47
4.5 改进的宽带上变频混频器的设计 ... 48
4.6 电路测试 .. 51

第五章 总结 .. 54
5.1 论文总结 .. 54
5.2 展望和建议 ... 55

致 谢 ... 56

参考文献 ... 57
ABSTRACT

Today, TV tuner takes a very important role in the future development of the Digital Signal Television. From cable to wireless, Digital Signal Television becomes more necessary in our life. In the TV tuner receiver system, cable signal and wireless signal can be received and decode, then transferred to digital signal and sent to backend for further signal processing.

An up-conversion wide band mixer used for the TV tuner system is designed in this paper, with the frequency range from 56MHz to 806MHz and output central frequency of 1.1GHz. TV tuner adopts double conversion super-heterodyne architecture. Firstly, it converts the input wide band RF signal to a higher 1.1GHz intermediate frequency, and secondly, down-convert the 1.1GHz frequency to 44MHz intermediate frequency for DSP at backend. From the analysis and comparison of the advantage and disadvantage of the Active and Passive mixer, I decide to use Active Gilbert mixer topology, because the noise figure and conversion gain performance is better than the others, but the loss of the linearity performance must be considered. Series of linearity improvement idea are put forward and adopted in this paper to make up for the loss of the linearity performance. With the Chartered 0.35um library file and spectreRF simulation tool, my design is proved that the designed circuit can meet the system’ requirement from the simulation result.

The up-conversion is taped out in chartered 0.35um CMOS process. For the sake of measurement, the RF and LO bias circuit are added to the up-conversion circuit. At the end of the paper, the core measurement plan is put forward. Because the wide band match problem can not be resolved, the measurement plan is just based on the point frequency input and point frequency output, and both the input impendence and the output impedance are all 50Ω.

Keywords: up-conversion, down-conversion, Active mixer, Passive mixer, image signal
摘 要

TV tuner 是未来数字电视发展的重要环节，从有线到无线，数字电视在我们生活中将会越来越重要。通过 TV tuner 的接收系统可以将 cable 信号和无线信号接收并解调，转换成数字信号，送到内部做数字信号处理。

本文主要设计了用于 TV tuner 系统中的上变频宽带混频器，它的工作频率为 56~806MHz，输出中频为 1.1GHz。TV tuner 采用两级变频的 super-heterodyne 结构，前一级就是通过宽带的上变频混频器将输入的 RF 信号上变频到一个 1.1GHz 的点频附近，然后再通过一个下变频的混频器将这个 1.1GHz 的点频下变频到 44MHz 的低频附近输出到后面的滤波器进行进一步处理。通过对 Active 和 Passive 混频器各种电路结构优缺点的分析和比较，最终决定混频器采用 Active 的 Gilbert 混频器结构，因为这样电路的 Noise Figure 和增益性能会比较好，但线性度的性能会有所损失。本文中提到并采用了一系列的提高混频器线性度的方法，以弥补这一损失。本设计用 chartered0.35um 的库用 spectreRF 进行仿真，仿真结果说明，这种结构完全可以满足系统的要求。

设计的上变频电路在 chartered0.35um CMOS 的工艺中进行流片，为了方便测试，在电路中加入了偏置电路为 RF 和 LO 输入端提供直流电压。在论文的最后介绍了芯片测试的方案，由于没能解决好宽带输入阻抗匹配的问题，所以整个芯片是计划在点频输入和点频输出的情况下进行测试，输入输出阻抗都是 50Ω。

关键字：上变频，下变频，有源混频器，无源混频器，镜像信号
引言

1.1 通信系统的概念

在我们的日常生活中接触最多的通信产品无疑就是手机，在手机移动通信领域里采用多路技术（multiple access techniques），这种技术是区别于只有一个发射端和一个接受端的单路技术。在多路技术的情况下，通讯系统就显得异常的复杂，这时候我们就需要有一个标准来规范和定义它的一些特性参数。通常，这些特性参数包括有带宽、时序和数据编码方式。多路技术按照实现方法的不同，分为频分多路技术（frequency-division multiple access, FDMA），时域多路技术（time-division multiple access, TDMA），和代码多路技术（code-division multiple access, CDMA）。

自从有了RF（Radio Frequency）电路便有了手机的诞生，而手机的出现使得电话的通信系统变得异常的复杂。当你用手机给家人打了一个电话，你可能不会知道，为了实现这一个看似简单的事情，已经有成百的科学家和工程师为之付出了近一个世纪的努力。更不可能想到的是，这一瞬间手机芯片的计算能力甚至比早期的个人电脑的计算能力还要强大。

无线通讯技术产生于1901年，那一年Guglielmo和Marconi将射频信号发送出去，并在大西洋的彼岸成功的接收到了射频信号。这个试验有力的证明了，不仅仅电话线可以传送信息，地球上的任何物质包括大气层都可以传送信息。然而，在最初双向无线传输由于其实现的难度很大，所以只能运用在军事上，而民用方面只能实现单向传输，比如说无线广播，或者是无线电视台。这种情况持续了几十年的时间，直到晶体管的出现。

通讯系统中的基本结构是要有接收端和发送端，而现今的通讯要求远比这个要高，每个终端不仅要能够同时具备接收和发送的功能，而且还要满足高性能，多频段，宽带，低成本，低功耗的要求，这几个条件都是相互制约的。任何一个信号channel都是在一定的窄带内的，如图1.1所示。一个信号通道通过transmitter调制，带通滤波器放大，天线发送，然后receiver通过天线接收，解调，通过带通滤波器放大。Transmitter的带通滤波器要放大发送的信号，还要防止信号能量损失。Receiver的带通滤波器既要能够对有效信号
进行放大，又要对有效带宽以外的干扰信号进行抑制。由于本论文的重点在于接收端中 Mixer 的设计和运用，所以下面将对接收端的不同结构做一个介绍。

图 1.1 通信系统中的(a)发送端(Transmitter) (b) 接收端(Receiver) 结构原理图
1.2 接收端的结构

通讯系统结构有很多种，通常被采用的也就两三种。下面我就比较常用的三种结构进行简单的介绍。这三种结构分别是超外差结构(Superheterodyne)，零中频结构(Homodyne)和镜像抑制接收结构(Image-Reject Receiver)[1]

1.2.1 超外差结构的接收端 (Superheterodyne Receiver)

右上面的分析我们可以看到，在接收端的带通滤波器必须在很高的频率下将所需要的通道信号放大解调出来，周围信号的干扰也影响着滤波器的性能。在超外差结构中，我们先把天线接收下来的信号通过混频器下变频到一个比较低的中频，然后用低通滤波器来将信号放大，这样我们就可以降低对滤波器 Q 值的要求。如图 1.2 所示

图 1.2 (a) 超外差结构的原理图 (b) LNA 降低噪声的示意图

信号 ω_1 先与 $A_0 \cos \omega_0 t$ 在混频器中混频，这里的 $\omega_0 = \omega_1 - \omega_2$，混频的结果就是产生一个频谱 ω_2 和另外一个频谱 $\omega_1 - \omega_2$。这样低通滤波器就可以把后者滤掉，我们把这个过程叫做下变频。由于噪声会影响系统的性能，所以在信号送到混频器进行混频之前先要通过一个低噪声放大器(LNA)，如图 1.2(b)所示。输入信号我们称作 RF 信号 ω_{RF}，ω_0 的正弦信号由振荡器产生，一般用 ω_{LO} 表示。混频器的输出信号 ω_2 叫做中频(intermediate frequency)。
信号,中频信号会受到几个因素的影响,要提高混频器的性能必须注意这几个因素。

首先是镜像的问题。什么是镜像问题？由于在混频器中输入信号是没有极性的,所以对于两个输入信号 \(x_1(t) = \cos(\omega_1 t) \) 和 \(x_2(t) = \cos(\omega_2 t) \) 来说,混频后在低通滤波器输出的信号中, \(\cos(\omega_1 - \omega_2) \) 与 \(\cos(\omega_2 - \omega_1) \) 是没有区别。因此, 在超外差结构中,在频谱上关于 LO 信号对称的两个频带都会被下变频到相同的中频信号上。假如所需要的信号频谱的中心频率为 \(\omega_1 = \omega_{LO} - \omega_{IF} \), 那么中心频率在 \(\omega_{IM} = \omega_{LO} + \omega_{IF} \) 的镜像信号也会被下变频到相同的中频上, 如图 1.3 所示。

![图 1.3 镜像干扰问题的示意图](image)

镜像干扰问题的存在严重影响通信系统的性能, 尤其是混频器的性能, 它会导致最后输出的有效信号完全被镜像干扰信号给“湮没”掉。通常用来解决镜像问题的方法是在混频加抑制镜像信号的滤波器, 如图 1.4 所示。这种滤波器要求对镜像信号进行有效的抑制,而且有效信号的能量损耗要小,如果这两个要求要同时满足的话就必须要求 \(\omega_{IF} \) 足够的大。

![图 1.4 通过滤波器抑制镜像噪声](image)
那么是不是就说 ω_{IF} 越大越好呢？我们回想一下，超外差结构的特点是将 RF 信号下变频到一个比较低的中频，这样对中频滤波器的 Q 值就可以大大提高，而如果我们要有效的抑制镜像问题，那么就要提高 ω_{IF}，所以这两个条件是相互制约的，满足一个条件，另一个条件就不能很好的满足。在采用 Superheterodyne 结构的时候，输出中频的值必须在这两者之间衡量，我们把这称作为敏感性能和选择性能之间的相互制约。

Superheterodyne 结构还有一个比较大的缺点，那就是镜像抑制滤波器通常都是片外的 passive 滤波器，这样 LNA 相当于要驱动一个 50 Ω 的负载(镜像抑制滤波器的输入阻抗)，使得 LNA 的 noise figure，增益，稳定性，功耗等性能的相互制约条件更加严格。

![Diagram of Dual-IF Superheterodyne Receiver](image)

图 1.5 Dual-IF superheterodyne receiver
除了镜像干扰问题，还有一个比较有趣的现象——半中频问题。一个中心频率在\((\omega_{RF} + \omega_{LO})/2\) 上的一个干扰信号没有被滤掉，和\(\omega_{RF}\) 的有效信号一起输入到下变频的混频器里面，如果这个干扰信号发生二阶效应(second-order distortion)与 LO 信号的二次谐波发生混频，输出中频恰好是在\(|(\omega_{RF} + \omega_{LO}) - 2\omega_{LO}| = \omega_{IF}\) 上，或者如果干扰信号与 LO 信号发生混频，然后在基带上发生二阶效应，同样会在\(\omega_{IF}\) 的有效输出上叠加一个干扰输出信号。要消除半中频现象带来的影响，就必须消除电路里面的二阶效应，还要保证 LO 的能量至少有 50% 是集中在一次谐波上。我们也可以让混频器输出的信号通过 Image-rejection 滤波器的时候，对\((\omega_{RF} + \omega_{LO})/2\) 上的干扰信号进行有效的抑制。

从前的分析中我们可以看到，镜像干扰和半中频问题的主要矛盾集中在提高敏感性能和提高选择性能之间，要同时满足两个性能的要求几乎是不可能的。为了解决这个问题，我们可以将超外差结构通过两次下变频来实现，然后每一级的前后都接一个带通滤波器和低噪声放大器。如图 1.5 所示，这种采用两级下变频的方法可以在比较低中频上实现信道的选择，因此降低的对滤波器 Q 值的要求。现在大部分的 RF Receiver 采用这种两级的下变频的结构，所以也称为“Dual-IF”结构。

总之，在选择超外差结构进行设计时，要根据系统 noise figure, IP3 和每一级的增益和功耗来决定对各个子单元的性能要求，而且要最大限度的提高考虑系统的选择性能和敏感性能。尽管由于系统结构的复杂性和需要外接很多外部器件，但超外差结构仍然被认为是一种最稳定的接收方法。

1.2.2 零中频结构的接收端 (Homodyne Receiver)

在我们研究了超外差的结构之后，也许会有一个疑问，那就是为什么不把接收到的 RF 信号直接通过下变频的混频器变到基带上，这样信号不就可以直接送到 ADC，然后送到后面做信号处理了吗？这种原理实现的接收端被称作“homodyne”，“direct-conversion”或是“零中频(zero-IF)”，也就是说本的振荡的频率选择到与载波频率相同。
如图 1.6 所示，这是 Homodyne 简单的结构图，有图中我们可以看出来，当本地振荡的频率选择到与载波频率相同的时候，输出为零中频，而且后面只用接一个用于选择信道的低通滤波器就可以了。该电路是用于接收双边带的幅度调制信号，因为输出的中频信号既有输入信号左半边的频谱也包括输入信号右半边的频谱。如果接收频率调制或者是幅度

\[
\begin{align*}
&\cos \omega_0 t \\
&\sin \omega_0 t
\end{align*}
\]

当本地振荡的频率选择到与载波频率相同的时候，输出为零中频，而且后面只用接一个用于选择信道的低通滤波器就可以了。该电路是用于接收双边带的幅度调制信号，因为输出的中频信号既有输入信号左半边的频谱也包括输入信号右半边的频谱。如果接收频率调制或者是幅度

调制的信号，就要用到如图 1.7 所示的结构了，这种结构的下变频必须提供积分的输出，以避免信号内容的损失。这是因为 FM 或 QPSK 信号两个边带的信息不相关，所以必须分成 I 和 Q 两个信道分别下变频到基带上，然后再组合起来。

Homodyne 结构有两个很大的优点。一个是没有镜像干扰问题，因为它的输出中频为 0，这样就不需要再在片外接镜像抑制滤波器，LNA 也不需要驱动 50Ω 的电阻；另外一个优点就是，用便于在片上集成的低通滤波器和基带放大器取代了一般需要片外接的 SAW 滤波器以及后面的电路。

尽管 Homodyne 结构有这么多的优点，但是在现在的通讯系统里面不是很常用，这是为什么呢？这主要是因为直接将 RF 信号下变频到基带上会带来一系列其它很严重的问题，而这些问题在超外差结构中却并不是很突出。这些问题主要有：

1. 信道选择（Channel Selection）

在信道选择时，采用 active 滤波器比采用 passive 滤波器的效果要差，因为 active 滤波器的 noise figure，线性度和功耗之间的相互制约比 passive 滤波器要严格。在基带信号处理的结构[2]如图 1.8 所示。
图 1.8 基带信道选择的三种结构

该图中的三种结构都是用在图 1.7 的 I, Q 分支混频之后的信道选择处理，如果我们分析一下就可以发现，尽管这三种结构的先后顺序不同，但是每种结构中总有一个模块会有很高的性能要求。比如说 c 中的结构，因为是在基带，所以我们可以先用 ADC 将模拟信号转为数字信号，然后再做数字处理进行信道选择，这样的结构是非常理想的，但是我们对 ADC 的要求就会很高。首先它的线性度要好以便于能够减小误码率，其次它的热噪声 (thermal noise) 和量子噪声 (quantization noise) 都要很低，以免干扰正常的信号值，一般噪声要在几百毫伏的范围之内。

2. DC Offsets

Homodyne 的电路原理是将 RF 信号下变频到零中频，由于输出的中频信号是包含 DC 偏置电压的，所以在中频信号输出的时候，这个偏置电压就会干扰正常的信号电压，而且会是使后面的电路饱和。我们可以通过下面的分析来进一步了解 offset 电压的一些不好的影响。

图 1.9 (a) LO 信号自混频 (b) 干扰信号自混频
如图 1.9 所示，我们知道 LO port 与混频器的输入端之间的 isolation 不可能无穷大，所以总会有 feed through 从 LO port 到 A 和 B。如图 1.9(a)所示，这叫做“LO leakage”，这个效应是由于寄生电容和衬底耦合造成的，而且如果 LO 信号很大的话，bond wire 也会耦合。LO 信号的漏信号通过 B 点输入到混频器的输入端，又和 LO 信号进行混频，这样就在混频器的输出端 C 点，产生了一个 DC 信号，这种现象就叫做自混频。与之原理相同的就如图 1.9(b)所示，某个干扰信号的漏信号穿通到 LO port 端，然后与在混频器中与输入的该干扰信号自混频。

还有一点，从天线到 X 点的增益总共大约有 80 到 100dB，要将几百毫伏的输入信号放大到 ADC 能够 sense 到的电压范围，而 LNA/Mixer 的电路一般提供大约 25 到 30dB 的增益。所以，自混频问题在 Homodyne 的结构中还是很严重而且很难解决的。

Offset 的问题可以用两种方法来解决，以提高电路的性能。一种方法是在 Transmitter 中将基带信号进行编码，使基带信号在调制和下变频之后，在 DC 上的能量最少，这叫做“DC free coding”。这种方法主要用于宽带传输。第二种方法是利用数字无线标准中对空闲时间间隔的定义来减小 Offset 的效应。如图 1.10 所示，电容将两个有效信号之间的 Offset 信号储存起来，这样就在接收数据时引入了一个将零频率信号的虚地点。

3. I/Q Mismatch

由前面的分析我们可以知道，对于相位和频率调制来说 homodyne receiver 必须分成 I 和 Q 两条支路分别混频处理。这需要将 RF 或者 LO 信号相移 90°，但是进行相移的电路
是非线性的，于是在I和Q之间会有不匹配的情况，这样会影响输出的结果，增加误码率。
如图1.11所示，I，Q支路上的很多因素都会造成I/Q的增益和相位误差。

图1.11 由于不同步造成的I/Q mismatch

通常，要求幅度的mismatch要低于1dB，相位的误差不能超过5°，但这些约束还取决于调制的类型和方法。虽然I/Q mismatch的问题已经是离散系统中的一个严重障碍，但是在Homodyne结构中，更倾向于提高系统的可集成度。而且，mismatch随着时间，信号传输的技术的不同而不同，所以可以通过这些方法来解决mismatch的问题。

4 奇偶失真

如图1.12所示，两个信号很强的干扰信号离得很近，而且在带通滤波器的范围之内，

图1.12 奇偶失真产生干扰信号的影响

那么，通过混频器的时候，这两个干扰信号由于通过LNA的时候，就会产生一个在DC附近的干扰信号，如果我们的混频器是一个理想的混频器，那么就会把这个在DC附近的干扰信号给上变频到很高的频谱上，但实际上混频器是有feed through的，这样在Mixer的输出就会有在DC附近的干扰信号出现。
这种二阶失真通常用二阶失真交点来表示(second-order intercept point)，简称做 IP2。这个和混频器里的 IP3(三阶交调失真点, three-order intercept point)的名称很相似。我们可以仿造 IP3 的定义方法来定义 IP2 的值，即两个相同幅度的干扰信号与低频信号一起输入到非线性的电路中，绘出理想输出曲线和干扰信号的输出曲线，两者相交的时候对应的输入低频信号的幅值就叫做 IP2。

我们可以通过 LNA 和 Mixer 来克服这一问题。我们需要注意的两点问题是：第一，天线和两条支路的滤波器是单端器件，所以要将这种单端器件转成双端差分器件，但是这种转换也会带来问题，这是由于加了转换器件，那么就会使得信号有几百的分贝的损失，尤其是在高频的时候，这样就会增大电路的 Noise Figure。第二，如果 LNA 是双端输入双端输出，那么就需要 LNA 的功耗比单端器件的功耗大，已使得 Noise Figure 降低。

5 Flick Noise

因为 Homodyne 结构的输出是在 DC 附近，所以 1/f 噪声的影响就会很大。由于这个原因，我们必须将 RF 信号的放大倍数变大，这样就会可以降低 Noise Figure，而这要通过 active mixer 来实现。

6 LO leakage

除了 DC offset 效应，LO 信号串通到天线上发送出去，然后又被其他使用相同标准的接收器接收到的话，就会成为干扰信号。

1.2.3 镜像抑制接收器 (Image-Reject Receivers)

镜像抑制接收器结构的原理就是将信号和镜像信号分别传输，然后将镜像信号和自己的反相信号相加，已达到去除的目的。将信号和镜像信号分开分别处理是可性的，因为这两个信号必定是在 LO 信号的两边分布的。

假设输入信号是

\[x(t) = A_{RF} \cos \omega_{RF} t + A_{im} \cos \omega_{im} t \] (1.1)

其中，第一项表示 RF 信号，第二项表示镜像干扰信号。为了不失一般性，我们假设

\[\omega_{RF} - \omega_{LO} = \omega_{LO} - \omega_{im} \] (1.2)
在 x(t) 两边乘以 LO 的相位，并且忽略高频分量，我们可以得到在图 1.13 中的 A 和 B 点的信号表达式:

\[
x_A(t) = \frac{A_{RF}}{2} \sin(\omega_{LO} - \omega_{RF}) t + \frac{A_{im}}{2} \sin(\omega_{LO} - \omega_{im}) t
\]

\[
x_B(t) = \frac{A_{RF}}{2} \cos(\omega_{LO} - \omega_{RF}) t + \frac{A_{im}}{2} \cos(\omega_{LO} - \omega_{im}) t
\]

(1.3) 式可以写为

\[
x_A(t) = -\frac{A_{RF}}{2} \sin(\omega_{RF} - \omega_{LO}) t + \frac{A_{im}}{2} \sin(\omega_{LO} - \omega_{im}) t
\]

(1.5)

从 A 到 C 反相了 90\(^\circ\)，所以可以推导出

\[
x_C(t) = +\frac{A_{RF}}{2} \cos(\omega_{RF} - \omega_{LO}) t - \frac{A_{im}}{2} \cos(\omega_{LO} - \omega_{im}) t
\]

(1.6)

如果我们把 \(x_C(t)\) 和 \(x_B(t)\) 相加，就可以得到输出

\[
x_{IF} = A_{RF} \cos(\omega_{LO} - \omega_{RF}) t
\]

(1.7)

这样 RF 信号就下变频到了 IF 信号上，而且没有镜像信号的干扰。能实现这一目的的主要原因式，B 和 C 的有效信号同相，而镜像信号反相，所以相加之后就将镜像信号给抵消掉了。这里 90\(^\circ\) 的相移将 +\(\omega_{IF}\) 信号和 -\(\omega_{IF}\) 信号给区分开来了。

实际上的 90\(^\circ\) 相移式通过 +45\(^\circ\) 和 -45\(^\circ\) 相移一起来实现的。如图 1.14 所示:
这种系统结构的主要问题还是 mismatch 的问题。如果 LO 信号的相位有误差的话，那么镜像信号就不可能被很好的抵消掉，会破坏正常输出的信号。

图 1.14 所示的是通过 90°相移来让镜像信号在两个支路上反相，然后相加得到一个比较理想的 IF 信号，但是 90°相移电路会带来很多问题，所以我们可以换一种电路结构同样可以让镜像信号抵消掉。

如图 1.15 所示，Weaver 结构用两次正交混频取代了 90°相移的方法。我们忽略一般的损耗，假设 $\omega_2 << \omega_1$，那么 A 点信号要与 $j[\delta(\omega + \omega_2) - \delta(\omega - \omega_2)]/2$ 求卷积，得到 C 点的信号；同理，将 B 点的信号与 $j[\delta(\omega + \omega_2) + \delta(\omega - \omega_2)]/2$ 一起求卷积，得到 D 点的信号，然后将 D 点的信号减去 C 点的信号，就刚好可以将 Image 信号给抵消掉。由于 ω_2 信号的存在，使得输出还有 $+\omega_2 + \omega_{IF}$ 和 $+\omega_2 - \omega_{IF}$，这就需要在输出接一个低通滤波器将这些 Image 信号滤掉。Weaver 结构尽管改进了 Image reject 中 90°相移的问题，但是它里面存在着“二次镜像” (secondary image)的问题。为了弄清楚这个问题，我们可以看图 1.16。
图 1.16 在 Weaver 结构中的 Secondary Image 的问题

如图所示，假设有一个中心频率为 $2\omega_2 - \omega_\text{in} + 2\omega_1$ 的干扰信号在有效的输入信号附近，通过第一次下变频，干扰信号变到 $2\omega_2 - \omega_\text{in} + \omega_1$ 频率上，这个信号与有效信号是关于 ω_2 信号的 Image signal，所以当再次通过下变频的时候，这个干扰信号就会与有效信号有相同的输出频率，这样两者的频谱就会叠加在一起，使得信号的 Noise Figure 很大。考虑到这个问题，在图 1.15 中的结构必须加一个带通滤波器，抑制二次镜像干扰信号。

或者通过调整同样满足 $\omega_2 \pm \omega_1 = \omega_\text{in}$ 关系式的输入 LO 信号的频率让二次镜像信号被下边频到与有效信号相混淆。

除了上述所介绍的接收端的结构外，还有 Digital—IF 的接收端，Subsampling 接收端，这里就不再详细介绍。
1.3 设计目的

本论文主要是研究用标准的 CMOS 工艺实现宽带混频器的设计，用于 RF TV tuner 系统的接收端。如图 1.17[3][4]所示，TV tuner 采用超外差结构进行设计，但是又与简单的超外差结构有所不同，下面我们来具体分析一下。

![图 1.17 数字电视调制接收系统的结构原理图](image)

前面提到超外差结构的原理是将比较高频率的输入信号先下变频到一个比较低的频率，然后再进行模数转换，再放到数字电路中去做信号处理。而本设计结构中采用两级变频的结构，先对输入信号做一个上变频，再将前一级的输出中频放到第二级做下变频，以达到 TV tuner 的系统设计要求。

为了满足 TV tuner 中对上变频 mixer 的要求，必须在上变频 mixer 前一级加一个电压衰减调节器(Variable-Gain Amplifier，简称 VGA)。因为在 TV tuner 系统中，Tuner 的输入信号幅度很大，再经过 LNA 放大就会超过 mixer 和后面模块的电压工作范围，加 VGA 的目的是让 Tuner controller 进行反馈调制，限制输入到 mixer 以及后面模块的信号幅度，以免幅度太大超过 mixer 和后面模块的电压工作范围。在 VGA 的后面就是上变频 mixer，这两者组合起来就是要研究设计的 Up-conversion 模块。上变频 mixer 是一个宽带输入的混频器，带宽为 56~806MHz，输出是 $\omega_{IF}=1.2MHz$ 的点频；下变频 mixer 是 $\omega_{RF}=1.2MHz$ 点频输入，$\omega_{IF}=44MHz$ 点频输出。相比较而言，上变频 mixer 要难设计，它的输入带宽达到 750MHz。

我们将把设计的重点放在 active 混频器的设计上，系统的放大倍数要求有 10dB 左右，用 passive 的混频器不能满足要求。我们要研究怎样优化混频器的性能已达到设计的目的，并研究 VGA 的设计和优化，最后将研究怎样用 CMOS 工艺实现设计的混频器电路。
1.4 论文提纲

本文在第二章将介绍 Mixer 的基本工作原理，在这一章中会对混频器的一些性能参数进行介绍，并分析怎样设计才能使得性能提高，以及这些性能之间的相互制约。

在第三章中介绍各种 Mixer 电路的区别和比较。我们的重点将放在 Active 的 Mixer 电路结构的分析上。

在第四章中将介绍 VGA 电路的设计和仿真，并对 VGA 在系统中的作用和性能要求做一个详细的讨论，介绍 Mixer 电路的设计和仿真，以及在 Chart0.35um 工艺中的版图实现和测试方案。

第五章将对本文所做的工作进行总结，以及以后研究发展的讨论。
第二章 混频器的基本概念

这一章主要讨论混频的一些基本概念，以便于进行进一步的讨论。线性时不变系统是不能进行频率变化转换的，这时就必须用到混频器。混频器设计的关键在于怎样协调好几个性能参数的平衡，以达到最好的效果。

2.1 混频器的基本原理

混频器核心的工作原理是将两个输入信号在时域上相乘，然后输出已达到频率转换的目的。我们可以通过下面表达式来理解这一关系[6]：

\[(A \cos \omega_1 t)(B \cos \omega_2 t) = \frac{AB}{2} [\cos(\omega_1 - \omega_2) t + \cos(\omega_1 + \omega_2) t]\] (2.1)

两者相乘的结果包含频率相加和相减，信号幅度为与 RF 信号和 LO 信号成正比的关系。因此，如果 LO 的信号幅度为常数，那么输出信号的幅度就会与 RF 输入信号成正比关系。

但实际上混频器不能做到理想的乘法器，由于混频器是一个非线性器件，所以会有串绕效应 (cross-modulation)。如 (2.2) 式所示：

\[\omega_{IF} = m \omega_{RF} + n \omega_{LO}\] (2.2)

其中 m 和 n 为自然数。如果两个信号相加减就会产生很多除了正常 IF 信号外其它不必要的输出信号，而且其中会有一个分量在 \(2 \omega_{LO} - \omega_{RF}\) 频率附近，这个信号我们很容易联想到镜像干扰信号，也就是说如果正常的 \(\omega_{IF}\) 信号和 \(2 \omega_{LO} - \omega_{RF}\) 信号如果同时存在于两级变频结构前一级混频器的输出端的话，对于后一级的混频器输入来说会产生很严重的影响。

LO 输入信号也不可能只有一次谐波，在 LO 的 cos 信号中还有 2, 3, 4 次谐波分量。总之，这些非理想情况的存在就使我们对宽带混频器设计研究的切入点和方向。下面我们来介绍一下混频器几个比较重要的参数。
2.2 混频器的性能参数

2.2.1 转换增益(Conversion Gain)

混频器中一个比较重要的参数是转换增益(Conversion Gain)，它的定义是输出 IF 信号的幅度与输入 RF 信号幅度的比值。我们一般用电压比来表示转换增益，如(2.1)式所示，如果将输出表达式中的幅度系数除以 RF 信号的幅度，那么输出的信号比就是转换增益:

\[ConversionGain = 20 \log \left(\frac{V_{out}}{V_{in}} \right) = B / 2 \] (2.3)

它刚好是 LO 信号幅度的一半，也就是说只要提高 LO 信号的幅度就能提高混频器的增益，但这样会增加电路的功耗。

如果用功耗比来表示增益的话就如下式:

\[ConversionGain_{\text{power}} = 10 \log \left(\frac{V_{out}^2}{V_{in}^2} \cdot \frac{R_s}{R_L} \right) \] (2.4)

其中 R_s 和 R_L 分别为 RF 输入阻抗和 IF 输出阻抗。尽管混频器能提供一定的增益，但是它同时也会将噪声放大，所以获得好的噪声性能可以通过牺牲一定的增益来换取。

2.2.2 噪声系数(Noise Figure)

Noise Figure 的定义是：器件输入端的信噪比 (signal-to-noise ratio, SNR) 除以输出端的信噪比的比值。因为信号通过混频器的时候，总会有不应该被混频的信号被误当作有用的信号通过混频器输出，然后传到下一级，这样实际输出的信号就与理想的信号有差异，这种差异在一定程度上是可以容忍的，但是超过一定限度就会完全破坏信号实际的值，使得系统无法正常工作。具体的限度要根据系统仿真来决定，然后分配到各个子模块上的性能的指标就是模块设计时需要参照的标准。Noise Figure (NF) 用公式表示出来如(2.5)时所示:

\[NF = \frac{SNR_{\text{input}}}{SNR_{\text{output}}} = \frac{N_s + N_a}{N_s} \] (2.5)

其中 SNR_{input} 和 SNR_{output} 表示输入和输出的信噪比，N_s 是由于源极电阻产生的噪声，N_a 是由于电路中额外产生的噪声。Noise Figure 一般用 dB 来表示。
在我们分析噪声系数之前先要了解单边带噪声(SSB)和双边带噪声(DSB)的区别。前面我们知道镜像干扰在混频器的设计中是一个需要着重考虑的问题。镜像干扰信号是存在于和信号关于本地振荡信号 LO 镜像对称的频率点上的，如果我们的输入 RF 信号是一个单频点，即只存在于 LO 信号的一边，那么计算出来的 Noise Figure 就叫做单边带噪声 (Single-Sideband Noise，SSB)；如果输入 RF 信号是存在于关于 LO 信号镜像对称两边的双边带信号，那么计算出来的 Noise Figure 就叫做双边带噪声 (Double-Sideband Noise，DSB)。一般很少会有双边带的情况，所以我们只考虑单边带情况下的 Noise Figure。

很明显，单边带噪声要比双边带噪声大，因为两种情况下都有相同的输出中频噪声，而单边带输入的信号是双边带输入信号的一半，所以单边带噪声比双边带噪声要大 3dB。假设一个理想的混频器，那么它的 SSB NF 至少有 3dB[6]，如图 2.1 所示。

图 2.1 SSB 镜像噪声分析

Noise Figure 在混频器的设计中比较重要，在我们 TV tuner 的设计中的两级混频中，前一个宽带的混频器要求要严格，Noise 不能超过 12dB，否则通过后面的电路放大就会使得信号严重失真；后一级下变频的点频混频器的要求相对宽松一点，只要不超过 15dB 就可以了。因为 Mixer 一般是接在 LNA 后面的，LNA 将信号放大送到混频器中，所以一般对 LNA 的 Noise Figure 的要求要严格，当然这并不说明混频器的 Noise Figure 性能就不重要，如果混频器的噪声性能太差，那 LNA 的性能再好整个系统也无法正常工作。

2.2.3 线性度(Linearity)

在现代通信系统中，输入信号的动态范围是一个很重要的性能，它决定着系统性能的好坏，通常输入信号的动态范围在 80dB 到 100dB 的范围内。前面我们讨论了 Noise Figure，它是决定输入信号的幅值至少不能小于多少才能不被噪声所湮灭，那么线性度就是决定输
入信号幅值不能大于多少才不至于失真。线性度越好那么系统的输入动态范围也就可以越大，系统的性能就越好。

在窄带传输中，衡量线性度主要是通过三阶交调失真点来定义 (Third-order Intermodulation Distortion)，我们知道如果在理想的情况下，IF 输出信号应该是和 RF 输入信号成正比的，然而由于混频器是非线性变换的器件，而且有 cross-modulation 的情况的存在。假设有两个频率很相近的 ω_1, ω_2 信号加到非线性系统的输入端（比如 mixer 的 RF 输入端），输出往往包含并非输入信号 ω_1, ω_2 的谐波分量的组成部分，这叫做交调 (Intermodulation, IM)。这种现象出现在两个信号相乘的情况下，假设 $x(t) = A_1 \cos \omega_1 + A_2 \cos \omega_2$，由于在非线性系统中会有这样的现象，如果输入 $x(t)$，那么输出 $y(t)$ 就有

$$ y(t) \approx \alpha_1 x(t) + \alpha_2 x^2(t) + \alpha_3 x^3(t) \quad (2.6) $$

如果将 $x(t)$ 的表达式带入 (2.6) 式中，展开可以得到交调分量

$$ \omega = \omega_1 \pm \omega_2 : \alpha_1 A_1 A_2 \cos(\omega_1 + \omega_2)t + \alpha_3 A_1 A_2 \cos(\omega_1 - \omega_2)t $$

$$ = 2 \omega_1 \pm \omega_2 : \frac{3 \alpha_1 A_1^2 A_2}{4} \cos(2\omega_1 + \omega_2)t + \frac{3 \alpha_3 A_1 A_2^2}{4} \cos(2\omega_1 - \omega_2)t $$

$$ = 2 \omega_2 \pm \omega_1 : \frac{3 \alpha_1 A_2^2 A_1}{4} \cos(2\omega_2 + \omega_1)t + \frac{3 \alpha_3 A_1 A_2^2}{4} \cos(2\omega_2 - \omega_1)t $$

和基本组成分量 (fundamental components)

$$ \omega = \omega_1, \omega_2 : (\alpha_1 A_1 + \frac{3}{4} \alpha_3 A_1^3 + \frac{3}{2} \alpha_3 A_1 A_2) \cos \omega_1 t + (\alpha_2 A_2 + \frac{3}{4} \alpha_3 A_2^3 + \frac{3}{2} \alpha_3 A_1 A_2) \cos \omega_2 t $$

(2.8)

我们所需要的是 fundamental components，而如果 ω_1 和 ω_2 相差很小的话，三阶交调分量 $2 \omega_1 - \omega_2$ 和 $2 \omega_2 - \omega_1$ 就会出现在 ω_1, ω_2 输出的附近，滤波器是无法滤掉这些频率上的分量，如图 2.2 所示。

![图 2.2 在非线性系统中的串扰现象](image)

因为 IP3 或 IIP3 用来表示系统的线性度，所以测试输入的幅度必须有一个假设的前提条件，得到的 IP3 或 IIP3 对于同一电路来说就是独一无二的特征值，这样不同电路的线性
度才能够相比较。我们先来推导出 IP3 或 IIP3 的表达式，假设 $A_1 = A_2 = A$，将 (2.7) 和 (2.8) 式展开可以简化为

$$y(t) = (\alpha_1 + \frac{9}{4} \alpha_3 A^2)A \cos \omega_1 t + (\alpha_1 + \frac{9}{4} \alpha_3 A^2)A \cos \omega_2 t + \frac{3}{4} \alpha_3 A^3 \cos(2\omega_1 - \omega_2) t + \frac{3}{4} \alpha_3 A^3 \cos(2\omega_2 - \omega_1) t + \cdots$$ \hspace{1cm} (2.9)

假设 $\alpha_1 \gg \frac{9}{4} \alpha_3 A^2$，当输出的 ω_1，ω_2 与三阶交调分量 $(2\omega_1 - \omega_2)$，$(2\omega_2 - \omega_1)$ 的幅度相同时的输入 RF 幅值的点就称为 IP3 或 IIP3，输出的 IF 幅值的点称为 OIP3，如图 2.2 所示，所以得到

$$|\alpha_1| A_{IP3} = \frac{3}{4} |\alpha_3| A_{IF}^3$$ \hspace{1cm} (2.10)

因此，输入 IP3 就是

$$A_{IP3} = \frac{4}{3} \frac{|\alpha_1|}{|\alpha_3|}$$ \hspace{1cm} (2.11)

输出 OIP3 就等于 $\alpha_1 A_{IP3}$。

在实际中，当输出的 ω_1，ω_2 与三阶交调分量 $(2\omega_1 - \omega_2)$，$(2\omega_2 - \omega_1)$ 的幅度曲线相交的时候，假设条件 $\alpha_1 \gg \frac{9}{4} \alpha_3 A^2$ 已经不再成立，输出增益开始下降，三阶交调 IM 的失真影响变得明显。而且许多电路中 IP3 值往往都超过了输入的幅值范围 [7]，有时甚至比电源电压还高。因此，测量 IP3 的方法可以采用在很小的输入幅值的情况下绘出如图 2.2 所示的两条曲线，然后将两条曲线延长相交就得到 IP3 值。

图 2.2 混频器线性度定义参数的描述
还有一种方法就是通过计算来得到 $IP3$ 的值，设 A_{in} 表示在输入范围内任意输入 RF 的幅值，A_{ω_1,ω_2} 表示输出 ω_1, ω_2 的幅值，A_{IM3} 表示三阶交调 IM 输出的幅值，由(2.9)式可得

$$\frac{A_{\omega_1,\omega_2}}{A_{IM3}} = \left| \frac{\alpha_1}{3} \left| A_{in} \right| \right| \frac{4}{3} \left| \alpha_3 \right| \frac{1}{A_{in}^2}$$

(2.12)

把(2.11)式带入(2.12)式可得

$$\frac{A_{\omega_1,\omega_2}}{A_{IM3}} = \frac{A_{IP3}^2}{A_{in}^2}$$

(2.13)

两边求对数，并化简则有

$$2 \log A_{IP3} = \frac{1}{2} (2 \log A_{\omega_1,\omega_2} - 2 \log A_{IM3}) + 2 \log A_{in}$$

(2.14)

这样给出一个特定的输入通过频谱分析和简单的计算就可以得出该非线性系统的 $IP3$ 值，而不用通过画曲线来求出 $IP3$ 点的值。对这类的物理意义如图 2.3 所示，可以这样理解：三阶交调失真产生时对应的输入点等于 fundamental component 的幅值与三阶交调 IM 产生的输出幅值之差的一半再加上此时输入 RF 的幅值。

![图 2.3 计算 IP3 值的方法和图例](image)

这种计算 $IP3$ 值的方法使用在设计的初始阶段，实际电路中测量 $IP3$ 值的方法是采用单频率，然后绘图求延长线的方法，以保证把所有的非线性和频率因素都考虑进去。

还有一种衡量类似混频器这样的放大器件的动态范围的性能参数，叫做增益抑制点。由图 2.2 可以看出来，当输入电压比较小的时候输出是和输入成正比的，随着输入 RF 电压的增大，输出曲线就偏离了线性的方向，增益会逐步减小。通常我们定义，当实际输出
曲线比理想输入曲线低 1-dB 的时候对应的输入 RF 信号的幅值就叫做 1-dB 增益抑制点（1-dB compressing point）。

要计算 1-dB 抑制点（1-dB compression point），可以由非线性系统的输出方程得出，假设输入为 \(x(t) = A \cos \omega t \)，那么有

\[
y(t) = \alpha_1 x(t) + \alpha_2 x^2(t) + \alpha_3 x^3(t) \\
= \alpha_1 A \cos \omega t + \alpha_2 A^2 \cos^2 \omega t + \alpha_3 A^3 \cos^3 \omega t \\
= \alpha_1 A \cos \omega t + \frac{\alpha_2 A^2}{2} (1 + \cos 2\omega t) + \frac{\alpha_3 A^3}{4} (3 \cos \omega t + \cos 3\omega t) \\
= \frac{\alpha_2 A^2}{2} + (\alpha_1 A + \frac{\alpha_3 A^3}{4}) \cos \omega t + \frac{\alpha_2 A^2}{2} \cos 2\omega t + \frac{\alpha_3 A^3}{2} \cos 3\omega t
\] \tag{2.15}

由(2.15)式根据定义可得

\[
20 \log | \alpha_1 + \frac{3}{4} \alpha_3 A_{1-dB}^2 | = 20 \log | \alpha_1 | - 1dB
\] \tag{2.16}

即

\[
A_{1-dB} = \sqrt{0.145 | \frac{\alpha_1}{\alpha_3} |}
\] \tag{2.17}

比较(2.11)式和(2.17)式，可以得到 1-dB 抑制点与 IP3 的对应关系式如下：

\[
\frac{A_{1-dB}}{A_{IP3}} = \frac{\sqrt{0.145}}{\sqrt{4/3}} \approx -9.6dB
\] \tag{2.18}

一般来说，IIP3 和 1-dB 抑制点越大，那么电路的线性度就越好。除了三阶交调失真外，还有其它阶的交调失真也会影响电路的线性度的好坏。我们的设计中有一个下变频的混频器，它的输出中频是在 44MHz 左右，这样二阶非线性的问题就会变得比较突出，会影响实际电路的工作性能。
对于非线性电路，假设输入为 \(x(t) \)，那么输入输出的转换方程可以表示为如式(2.19)所示的泰勒展开式：

\[
f[x(t)] = K_0[x(t)] + K_1[x(t)]^2 + K_2[x(t)]^3 + \cdots
g(2.19)
\]

其中 \(K_1[x(t)]^2 \) 表示二阶非线性串扰分量，当两个在频谱上靠得很近而且非常强的干扰信号，通过混频器就会产生一个接近基带的干扰信号，这种干扰现象叫做 IM2。如(2.20)式所示：

\[
(cos \omega_1 t + cos \omega_2 t)^2 = 1 + 0.5 \cos 2\omega_1 t + 0.5 \cos 2\omega_2 t + \cos(\omega_1 + \omega_2) t + \cos(\omega_2 - \omega_1) t
\]

基带分量：\(\cos(\omega_2 - \omega_1) t \) 且 \(\omega_2 - \omega_1 \leq \omega_{channel} \)

如果是只有一个干扰分量，如(2.21)式所示：

\[
(a(t) \cos(\omega t + \phi(t)))^2 = \frac{a^2}{2}(1 + \cos(2\omega t + 2\phi(t)))
g(2.21)
\]

\(\Rightarrow a^2(t)/2 \)

基带干扰信号

如果 \(a(t) \) 是一个常数，那么它很容易被滤掉，因为它是一个 DC 分量，而如果 \(a(t) \) 不是一个常数，那么输出就会在基带附近，和基带信号混在一起很难被滤掉。如图(2.5)所示，当输出中频信号与干扰分量的输出曲线相交的时候对应的输入信号就叫做 IIP2 点。

IM2 对 TV tuner 系统的影响十分显著[9]，我们知道 TV Tuner 是采用两级混频，先将输入 RF 信号通过一个宽带的混频器上变频到 1.1G 的中频，然后在送到第二级下变频的混频器，将 1.1G 的信号下变频到 44MHz。输入是 56～806MHz 的宽频带，通过第一级宽频带混频器的时候会有部分频率直接穿通到输出，然后输入到第二级的下变频混频器中，
这样就会有 IM2 干扰现象，不过在 TV Tuner 中的输出频率要求是 44MHz，所以比零中频输出的混频器要好得多，但是 IM2 干扰仍然不可忽略。要抑制二阶干扰，主要是要防止第一级混频器的输入穿通，也就是马上要提到的隔离(Isolation)的问题；再就是要通过一些特殊的方法或电路，来防止下变频混频器的 IM2 信号的干扰，比如说用差分电路结构来抑制奇偶干扰(even-order distortion)。

前面在 1.2.1 节我们分析 Super Heterodyne 结构的 Receiver 的时候，我们提到过半中频问题(Half IF problem)，如果下变频混频器的输入有一个频率在 \((\omega_{RF} + \omega_{LO})/2\) 的干扰信号，那么干扰信号在所需要的输出中频上也会产生一个信号，如果这个信号很大就会把正常的输出信号给湮没掉。\[10\]

线性度在混频器的设计中是一个非常重要的特征参数，对于点频的混频器设计来说，如果采用 Active 的混频器，可以通过在源级加电感来提高电路的线性度。但是对于宽带的混频器，就不能采用这种方法。

2.2.4 隔离度(Isolation)

信号之间的相互隔离也是一个很重要的问题，它使用来描述混频器对各个 port 之间信号发生穿通的抑制程度，一般信号相互之间穿通抑制越大，隔离的效果就越好。LO 往往很大，而 RF 很小，如果隔离不好就会是 LO 直接对 IF 产生影响，并且反向隔离不好的话，LO 信号还会影响到 RF 接收天线，使得接收天线发送 LO 的信号，从而损坏其它接收器收到的波形，还有可能被自身接收下来做自混频。LO-RF 和 LO-IF 的隔离是比较重要的，所以隔离度的定义是 LO 信号到 RF 信号和 IF 端口的衰减度，通常用 dB 为单位。

提高混频器的隔离度对于抑制 DC offset 和 IM2 干扰有很大的作用，所以 LO 和 RF 信号不能用串联输入，必须接在 MOS 的不同端口，通过 MOS 管的栅源之间的隔离来抑制 RF 和 LO 信号的相互穿通，同时还要抑制 LO 信号对输出 IF 信号的穿通，防止它影响下一级的电路。我们可以在输出加滤波器来滤掉 LO 或 RF 穿通到 IF 的穿通信号，但是如果 LO 信号和 IF 信号的频率相同，那么电路的性能就会很差，因为输出滤波器根本不可能把穿通的 LO 滤掉，所以在设计的时候应当尽量避免这种情况。

2.2.5 输入输出阻抗匹配(Input & Output matching)

如果模块是放在整个系统中的，那么就要考虑和前一级与后一级的输入输出阻抗匹配
的问题。如果是单个模块的设计，那么就要求输入和输出都要达到 50 Ω的阻抗，这样用 50 Ω 内阻的仪器进行测试的时候，可以让信号输入和输出的效率最高，反射系数为零，可以保证测试结果的正确性和可行性。

输入输出阻抗匹配在芯片设计中是非常重要的，如果信号由于阻抗匹配不当而损失掉了，会导致输入的信号被完全反射会天线，产生的信号无法输出到下一级。通常使用史密斯圆图来测量双端口网络的输入和输出阻抗匹配[1][11]，S11 表示输入阻抗系数，S22 表示输出阻抗系数，有如下计算公式：

\[S_{11} = 20 \log |\rho| \] (2.22)

其中

\[\rho = \frac{z_i - z_o}{z_i + z_o} \] (2.23)

\(\rho \) 是反射系数，\(z_i \) 是混频器的输入阻抗，\(z_o \) 是混频器的输出阻抗，\(S_{11} \) 至少要小于 -10dB，这样才能保证有 90% 的能量被送到混频器中。

另一种表示阻抗匹配的方法是用电压波形比例（Voltage standing wave ratio，VSWR）来表示，它的定义是传输线上最高电压和最低电压的比例。VSWR 越大，mismatch 就越严重。VSWR 的定义如 (2.24) 式所示：

\[VSWR = \frac{1 + |\rho|}{1 - |\rho|} \] (2.24)

当 VSWR 小于等于 2:1 的时候，说明输入信号有 90% 进入到混频器中。
第三章 混频器的电路结构

3.1 混频器的基本工作原理和分类

如果非线性系统工作正常，那么它的输入输出数学表达式可以写为:

\[v_{OUT} = \sum_{n=0}^{N} c_n (v_{IN})^n \] \hspace{1cm} (3.1)

其中，表达式中展开后包括：DC 分量，输入谱波分量，和这些谱波分量的相干输出分量。在(3.1)式中的偶次项提供了 DC 分量，可以通过隔直滤波器滤掉；谱波分量包括基本谱波分量(m＝1)和m次谱波分量(m>1),都可以被滤波器滤掉因为它们的频谱分布往往远远超出 IF 接收频谱的范围；谱波分量的相干输出分量 \(p\omega_{RF} \pm q\omega_{LO} \)，只有当 \(p=q=1 \) 时候的二次相干谱波分量才是我们所需要的频谱，其它的都是干扰，前面已经分析过三次谱波分量和二阶串扰现象对系统线性度的干扰。这里的高次相干谱波分量的频谱分布有的会离所需要的 IF 频谱很近，以至于很难把这些干扰的频谱从需要的波段中滤掉，而且 \(N \) 越大这种相干波的干扰分量就越就越多。

混频器按照增益分类可以分为两种：Active mixer 和 Passive mixer。Active 顾名思义是表示用有源器件来组成的混频器结构，它的特点是增益比较大，一般可以达到 10dB 左右，MOS 管一般都工作在饱和区，采用 Active 的混频器可以降低对 LNA 增益的要求和而且可以降低后面一级电路的 Noise Figure 的要求[12]。

如图 3.1 所示，这是一个简单的 Active mixer，LO 控制 MOS 管相当于一个理想的开
关，M_1的漏源电流是受RF信号控制的，在通过M_2和M_3放大，这样就能获得一个很大的增益。但由于M_1工作在饱和区，所以电路的线性度不是太好。对于点频的混频器可以通过source degenerated结构在源级上面加电感，在栅极上会有输入源的内部阻抗R_s。当从M_1的栅极往里看到的跨导为1/R_s的时候，电路的线性度最好，这个时候阻抗匹配的效果也是最好的。

![图3.2 Passive mixer](image)

如图3.2所示是一个Passive的混频器。Passive混频器的最大缺点就是增益损耗很大，这样导致电路的功耗很高。我们可以分析一下图3.2中混频器的增益情况，LO控制MOS管的开关，如果LO信号是一个方波信号而且占空比为50%，那么LO信号在\(\omega_{LO}\)频率上有一个幅度为\(\sin(\pi/2)/\pi = 1/\pi\)的基本分量(fundamental)，而IF输出信号是用RF信号与LO信号相乘的结果，所以最后增益就位基本分量的幅度值\(1/\pi\)。Passive混频器的最大优点就是它的线性度好，因为MOS管工作在线性区，所以漏源两端看上去就是一个电阻，所以它的线性度会很好。但由于它的增益不大，而且工作在线性区，所以Passive混频器的Noise Figure会非常的大，这在TV Tuner系统设计中是不允许的，因此本设计中将选用Active混频器。

3.2 Active混频器

3.2.1 基于平方关系(square-law)的混频器

混频器中最简单的结构是利用漏源电流与栅源电压的之间的平方关系而设计的混频器，如(3.2)式所示:

\[
v_{IN} = v_{RF} \cos(\omega_{RF}t) + v_{LO} \cos(\omega_{LO}t)
\] \hspace{1cm} (3.2)

这种混频器叫做基于平方关系的混频器，如图3.3所示。
在 square-law mixer 中，输出展开式只有 c_1, c_2 为非零，假设输入为 LO 和 RF 的线性组合:

$$V_{IN} = v_{RF} \cos(\omega_{RF} t) + v_{LO} \cos(\omega_{LO} t)$$ (3.3)

输出表达式可写为

$$V_{OUT} = V_{fund} + V_{square} + V_{cross}$$ (3.4)

其中

$$V_{fund} = c_1 [v_{RF} \cos(\omega_{RF} t) + v_{LO} \cos(\omega_{LO} t)]$$ (3.5)

$$V_{square} = c_2 \{[v_{RF} \cos(\omega_{RF} t)]^2 + [v_{LO} \cos(\omega_{LO} t)]^2\}$$ (3.6)

$$V_{cross} = 2c_2 v_{RF} v_{LO} \cos(\omega_{RF} t) \cos(\omega_{LO} t)$$ (3.7)

由三个分量的表达式可以知道，(3.4)式中前面两个分量要么是 DC 分量，要么就是谐波分量，都是不需要而且很容易被滤掉。只有第三项是需要的，由(20)式展开可得

$$V_{cross} = c_2 v_{RF} v_{LO} [\cos(\omega_{RF} - \omega_{LO}) t + \cos(\omega_{RF} + \omega_{LO}) t]$$ (3.8)

两个相减就得到 IF 的值，相加的一项被滤掉。非线性系统最终得到的是线性关系的 mixer，因为如果 LO 是一定的话输出 IF 的幅度于输入 RF 的幅度成正比，增益可以求出

$$G_c = \frac{c_2 v_{RF} v_{LO}}{v_{RF}} = c_2 v_{LO}$$ (3.9)

square-law mixer 的最大优点就是，很容易从输出中滤出所需要的 IF 的频谱，一般这种 mixer 都用长沟道的 MOSFETs，或者二次项占主要输出部分的非线性系统。如图 5 所示，就是一个简单的 square-law mixer 的实现电路。这种电路的缺点就是信号之间的隔离不好。
再举一个功能相同但结构有所改变的 square-law mixer，如图 3.4 所示

![图 3.4 Square-law MOSFET mixer (alternative configuration)](image)

其中，R_{bias} 选得很大，避免产生过多的负载，并且减小对 mixer 的噪声贡献。如果 V_{gs} 为 RF 与 LO 之和，那么该 mixer 的表达式可以写为:

$$i_D = \frac{\mu C_{ox} W}{2L} [V_{\text{bias}} + v_{RF} \cos(\omega_{RF}t) + v_{LO} \cos(\omega_{LO}t) - V_t]^2$$ (3.10)

3.2.2 基于乘法器(Multiplier-Based)的混频器

基于乘法器的 mixer 如图 3.5 所示

![图 3.5 单平衡(single-balanced) mixer](image)

它的性能比较优越，因为这种 mixer 理想情况下只我们产生需要的交调信号（Intermodulation Signal），而且 RF 信号，IF 信号与 LO 信号之间的隔离效果很好。只要 CMOS 工艺下能做出性能良好的 switch，那么就能得到正确的两个信号相乘的关系。如图 3.5 所示为一个 Single-balanced mixer，其中 V_{lo} 必须选得比较大，这样 RF 信号的动态范围才能够大一些。该图中，DC 和 RF 信号通过电流源产生的电流将会与方波相乘，方波的频率就是 LO 的频率，输出的表达式如下:

$$i_{\text{out}}(t) = \text{sgn}[\cos(\omega_{\text{lo}}t)] I_{\text{bias}} + I_{RF} \cos(\omega_{RF}t)$$ (3.11)

相当于 LO 信号控制 switch 的开与关，当 LO 信号大于零或小于零时，两条支路分别导通，这样可以使得 mixer 的工作效率提高一倍。
如图 3.6 所示，为 Single-balanced mixer 输出频谱的分布，由图中可以看出输出包括 LO 信号的谐波分量和 LO 信号谐波分量与 RF 信号的和差分量。所以 Single-balanced mixer 的输出还有难以分离的 LO 信号谐波分量，可以通过使用 Double-balanced mixer 来去除掉不需要的 LO 谐波分量。

如图 3.7 所示，为 Single-balanced mixer 的实现电路

其中，M1 的源与地之间接电感 LB 作为负载，是因为电感激不会有热噪声（Thermal noise），也不会有直流电压降，而且随着频率的上升它的电抗越大，这样可以抑制高频的谐波分量和高阶的交调分量，而且用电感接在漏端还可以进行输入阻抗匹配，这在最后芯片测试方法中会有详细的说明，所以用电感作负载比用电阻作负载好，但这是针对点频输入电路而言，对于宽带输入就不能采用在漏端加电感的方法。直流电压源 VBIAS 是提供一个偏置电流，RB 要选得很大，以减少它的噪声，并且避免使得 M1 的栅极负荷过重。

该电路是把 LO 控制的 MOS 管当成是一个理想的开关，因为方波的一次谐波分量的幅度是方波幅度的 $4/\pi$ 倍，所以该电路输出信号 IF 的增益为

$$ G_c = \frac{2}{\pi} g_m $$ (3.12)

其中，g_m 为 M1 的跨导，因为 IF 是交调分量的差分量所示是取一半为 $2/\pi$。
因为 single-balanced 的混频器在输出端会有 LO 信号的谐波风量，这样对电路的隔离性能影响很大。为了减少 LO 信号与 RF 和 IF 信号之间的相互穿通，进一步提升设计电路的隔离度，我们可以采用 Double-balanced Mixer，如图 3.8 所示。

该电路结构通过 LO 反平行连接，RF 平行连接，使得 IF 输出信号中的 LO 谐波分量被减掉。为了减小线性度对输入 RF 信号的动态范围的限制，该电路采用了双端输入的方法。直流电流源用一个 LC 网络来代替，这样既不会有 DC 压降还可以起到滤波器的作用。该电路的输出增益与 single-balanced mixer 的相同。这种 Double-Balanced Mixer 也叫做 Gilbert-cell Mixer，在本设计中将采用这种电路结构的混频器。

由图中可以看出 Gilbert 结构的原理利用电压转换为电流，然后用 RF 信号调制电流从而达到混频的目的，整个电路的线性度和噪声系数性能主要取决于图 3.8 中 M_{11} 和 M_{21} 两个 MOS 管的线性度和噪声性能。

3.3 Passive 混频器

3.3.1 电压混频器(Potentiometric Mixers)

电压混频器使用压控电流源的方法是通过电压控制电阻阻值变化[13]，如图 3.9 所示。工作在线性区的 MOS 管的电阻值与 RF 信号幅值变化成反比。MOS 管的 V_{ds} 是常数的话，那么漏源电流就完全随着输入 RF 信号的变化而变化。
如果 V_{ds} 是随者 LO 而变化的，那么输出电流就与 LO 和 RF 信号有关，并且随着它们的变化而成比例变化。在图中，$M_1 \sim M_4$ 起到混频器的作用，而电容则滤掉了交调信号的和以及它的高次谐波分量。输出电流的表达式可以写为

$$i_{in} = \frac{v_{LO}}{r_{ds}} \approx v_{LO} \cdot \mu C_{ox} \frac{W}{L} \left[(v_{RF} - V_T) - \frac{1}{2} v_{LO} \right] \approx K \cdot v_{LO} \cdot v_{rf}$$ \hspace{1cm} (3.13)

其中，LO 的谐波分量部分和二次项部分很容易被滤掉，所以结果只剩下 LO 信号与 RF 信号相乘的分量。结果 LO 与 RF 之和通过四个电容滤掉，它们之差则是我们需要的中频 IF 的频率，所以 Op amp 的带宽必须大于 IF 中频的值，这样输出 IF 幅值的结果就由反馈网络把电流转为电压输出。

为了提高线性度，那么 MOS 管的栅极上的电压必须要大于 v_{LO}，MOS 管才能工作在线性区。因此在栅极上要加一个 DC 直流电压才能满足这个条件。实际电路中，这种类型的 mixer 的线性度很好(如 40dBm)，但 noise figure 很高（如 30dB），噪声比较大是因为 MOS 管工作在线性区，其电阻的热噪声很大，还有一个原因就是与宽带 Op amp 的噪声匹配很难做到。这种乘法器的动态范围与 Gilbert 电流型 mixer 的动态范围相同。

3.3.2 Double-balanced Mixer

一个简单的 passive 整流 CMOS mixer 包括四个开关组成的桥型电路结构[14]，如图 3.10 所示。
开关的栅极分别由反相的 LO 信号控制，如果 M_1, M_4 导通，输出的 V_{IF} 就等于 V_{RF}，如果 M_2, M_3 导通，输出的 V_{IF} 就等于 $-V_{RF}$。LO 信号控制一个单位幅度的方波，通过方波的傅立叶展开项的奇次谐波分量可以得出输出 IF 信号包含许多 LO 与 RF 相乘的项，而我们很容易就能把不需要的波段滤掉。该电路的增益为

$$G_C = \frac{2}{\pi}$$

（3.14）

实际上，由于 MOS 的开启和关断不是瞬间完成的，这种与理想的偏差往往会使得增益变大。更具体的 mixer 电路结构如图 3.11 所示

在该电路中，中频输出负载接的是电容负载，用电容作负载的好处是不会产生热噪声，而且可以滤掉高频噪声和不需要的分量。在输入电路中，包括一个 L 型网络，后面接一个并行的谐振网络。L 型网络由电感 L_1 和谐振网络中的电容 C_3 组成，对输入的 RF 信号电压提供增益，以减小电压转换的损失。谐振网络由电感 L_3 和电容 $C_3 + C_L$ 组成，它的作用是滤掉输入端输入的以及 mixer 产生的带宽以外的噪声和输出 IF 频率范围以外的频谱。

由于这种电路没有 DC 偏置电压，所以不会有 1/f 噪声，这使得电路的噪声性能大大提高。
提高，因为1/f 噪声在所有噪声中的比重一般都很大。为了减小 LO 驱动上的功耗，可以把作为开关的 MOS 管的栅极电容调到与 VCO 电路中的电感产生谐振，这样功耗可以减小 Q^2 倍。总的来说，这种结构的混频器可以用于下变频的混频器设计中，因为它的 DC 影响比较小，但它是工作在线性区所以 Noise Figure 回受到电阻热噪声的影响，而且系统对功耗的要求不能太高。

3.3.3 Subsampling Mixer

用高性能的 CMOS 开关来实现的 mixer 叫做欠采样混频器（subsampling mixer）。这种 mixer 的采用主要是由于下变频输出的 IF 信号带宽往往都比载波频率要小，所以只要满足莱奎斯特律 (Nyquist criterion)，采样频率就可以比载波频率小。

如图 3.12 所示，这是一个跟踪-保持欠采样混频器的电路结构。

![图 3.12 Track-and-hold subsampling mixer](image)

其中 φ1 控制的是一个 PMOS 管。下面分析一下该电路的工作过程：

在跟踪模式中，M1 到 M5 都是导通的，而 M6 和 M7 则处在关断状态，所以采样电容右边的电压都等于共模电压 V_{CM}。采样电容的左边则接到 RF 输入信号上。M6 和 M7 断开，所以 Op-amp 与跟踪模式无关，跟踪的带宽仅仅决定于开关电阻和采样电容以及寄生电容产生的 RC 时间常数。电路是开环的，所以跟踪带宽比有反馈网络闭环时候的跟踪带宽要大得多。

在保持模式中，只有反馈网络中的 M6 和 M7 导通，电路变成了充电电容和 Op-amp 组成的反馈电路，这时候电路的建立时间仅仅比采样周期小，而比 RF 信号的周期要大，所以有反馈电路的带宽降低并不会有太大的影响。
虽然欠采样的时钟频率相对较低，但时钟产生必须要做得比较好，否则输出的结果就会不对。因此，除了跟踪带宽要足够大以外，采样时的不确定因素（uncertainty in the sampling instants）也要求减小到最少，这就决定于采样时钟的相位噪声。由此可以得出结论，采样时钟的频率除了要大于调制信号带宽决定的奈奎斯特频率，还要求它的时间抖动必须远小于载波周期。

这种 mixer 还有一个问题，即噪声太大。由于采样的时候，不仅采到了信号还采到了噪声，输入端的噪声也被叠加到了输出 IF 信号中，并且噪声和 RF 信号的增益差不多大小，而且输入 RF 信号的带宽要比 IF 信号的带宽大很多，所以该系统的 Noise Figure 很大（25dB SSB NF）。尽管电路的线性度很好，但由于它的 Noise Figure 很大完全抵消了它的这一优势。这种类型的 mixer 的动态范围还不如一般结构的 mixer 的动态范围大。其实这种 mixer 的 noise 和 IP3 特性相当于在一般的 mixer 前面接一个电阻分压。

理论上 LNA 可以来用来抑制这种 mixer 中的噪声，但实际上要在抑制噪声的同时提供很大的增益和很好的线性度是很难的，而且整个系统的动态范围也会受影响，所以要采用这种电路结构就必须解决好这些问题。
第四章 Upconversion 宽带混频器的设计

如图 4.1 所示，这是本设计中 TV-Tuner 中采用的系统结构图。这种结构通过两级变频将所需要的信号转变到基带附近。第一级上变频将输入的 RF 信号转到以一个固定频率为中心频率的中频上，在 TV tuner 中这个值是 1.1GHz，然后在将这个 IF 输出通过一个带通的滤波器将干扰信号包括镜像干扰信号滤掉，作为下一级下变频混频器的输入信号，第二级的输出中频是在基带附近中心频率为 44MHz 的信号。

通过第一级上变频混频器和带通滤波器，RF 信号变成的窄带信号，这样就大大的降低了后面电路的线性度的要求。如果 RF 的输入信号是 56~806MHz 的话，那么第一级输入 LO 信号的变化范围就为 1.156G~1.906GHz。镜像信号的频率为 2.156G~3.006G，虽然这段频率之间没有信号源，但是为了防止干扰信号中有频率在这个范围内的，在天线和上变频混频器之间必须加一个镜像噪声滤波器，以滤掉这些镜像干扰信号[15][16]。而这个镜像噪声滤波器可以通过一个简单的低通滤波器来实现，这是采用两级变频的一个好处。

但同时，这种两级变频 tuner 结构对抗串扰的要求非常高，因为输入 RF 信号是宽带输入信号。随着输入 RF 信号幅度的增大，tuner 可以容忍更大的 Noise 的影响，但同时需要系统的线性度更好，也就是说要求系统的 RF 输入动态范围要求越大。如果 RF 信号的增益能随着输入 RF 信号幅度的大小而调整，那么上变频混频器的线性度要求就能够适当的降低，后面我们会介绍用 VGA 来实现这一功能。这样就可以根据混频器所能达到的线性度的标准来限制输入到上变频混频器的 RF 信号的幅度，因为 IIP3 的要求会随着 RF 信号增益的降低而降低[17]。

在 tuner 系统中，我们关心的另外一个问题就是 LO 信号穿通的问题，因为这不但会在输入 IF 信号中产生干扰信号，而且还会成为后面电路的镜像干扰信号，如果穿通到天线上面就会发射出去干扰其它电路。不过在 Gilbert 结构中，这种穿通效应不会影响到电路的隔离性能，因为 LO 和 RF 信号都是不同 MOS 管的栅极输入，IF 信号是漏级输出，所以隔离性能会很好。

要满足系统设计的要求，在 Up-converter 模块设计中必须符合一下要求：

1) up-converter 的幅度调节范围要达到 40dB(-40~0dB)并且在这段范围内增益要随着控制电压成线性的关系
2) 输入信号动态范围为 70dBm(-80～-10dBm)，并且带宽要达到 1GHz
3) 所有输入输出阻抗都必须是 50Ω，这样可以便于阻抗匹配
4) 电路的线性度要好，否则会被后一级电路放大
5) 3.3v 电源电压，而且电流要低[18]

为了提高输入信号的动态范围，我们必须设计一个变增益衰减模块(Variable Gain Attenuation, VGA)。之所以要将输入信号衰减，是因为在 TV Tuner 系统中，输入的 RF 信号幅度很大，经过 LNA, Mixer, ADC 和 Op amp 一级级的放大后，信号幅度会大到电路无法正常工作，所以在系统输出电压后面加一级反馈电路，并将这个反馈的电压作为 VGA 的控制信号，将大信号衰减，控制系统中信号的幅度，提高输入信号的动态范围，从而提高 Up-converter 电路的线性度，这就是设计 VGA 模块的目的。

图 4.1 Block diagram of the digital TV tuner systems

4.1 VGA 电路的设计及仿真

我们知道，\((1-x)/(1+x)\) 是 \(\exp(-2x)\) 的近似估计，如果用 R-r 分压来衰减输入信号，可以表示为 \(1/(1 + R \cdot g_{ds})\)，所以我们我们可以有以下近似估计

\[
1/(1 + R \cdot g_{ds}) \approx \exp(-2R \cdot g_{ds}) \tag{4.1}
\]

而且，在线性区中，\(g_{ds}\) 是与栅源电压成正比 \((g_{ds} \propto V_{gs})\)，所以可以控制 R-r 衰减关系，来达到控制电压和增益成正比的关系。一级 R-r 的衰减是不能使得在这么大的动态范围之内近似成线性关系的，所以电路中采用 3 级衰减结构。如图 4.2 所示，输入控制电压为 \(V_{ct}\)，我们可以用跟随电路 \(M_{13}, M_{15}, M_{16}, M_{17}\) 产生一个跟随信号 \(V_c\)，并使它们之间的电压差
为一个定值 δ。V_{ct} 和 V_c 控制着工作在线性区的 MOS 的 g_{ds}，即控制着 r 的大小，的随着 V_{ct} 的增加和减小，三级 $R-r$ 会逐个导通或者逐个关闭，这样输出增益在很大的动态范围内会是呈现出线性关系。为了保证线性度能够满足要求，就要求三级衰减的每一级之间的 level shift (Δ) 和 δ 之间的关系近似满足:

$$\delta \approx \Delta/2 \quad (4.2)$$

为了提高电路的性能，使得 V_{ct} 在整个 0~3.3 的范围内都能够和 V_c 保持固定的电压差关系，如(4.3)式所示:

$$V_c - V_{ct} = V_{thp} - V_{thn} = \delta \quad (4.3)$$

就像图 4.2 中所示，先用 NMOS 管做一个向下的 level shift，然后通过一个 PMOS 管做一个向上的 level shift, 最终得到 V_c。通过这种方法得到的 δ 可以调节到比较小的 0.3~0.4v 左右，这样 Δ 就不用很大，使得三级衰减电路的衰减点从 0~3.3v 分布比较均匀，从而得到比较好的线性度。

图 4.2 改进的 VGA 电路图

该电路输入输出为双端口网络，输出点在 A 和 B 差分输出，可以通过开漏的结构将差
分电压转换为电流，输入到 Mixer 的输入中去（对于 RF 共栅输入结构的混频器），也可以直接这样将 A 和 B 点的电压差分输入到 Mixer 中去（对于 RF 共源输入结构的混频器）。

我们用 ChartRF0.35 的库，在 Candence SpecRF 中对电路的各种参数进行仿真。仿真波形如图 4.3, 4.4, 4.5 所示：

图 4.3 输出增益随着 V_{ct} 的变化成线性关系(V_{ct}:0~3.3v)

图 4.4 在不同频率下的增益曲线(V_{ct}:0~3.3v, TOP: 200MHz, Middle: 600MHz, Bottom: 800MHz)
4.1 VGA 的工作频率范围

（f_{3dB} > 1GHz，不同的曲线表示在不同的 Vct 下，从上往下 Vct 逐渐上升）

由仿真结构我们可以得出结论，VGA 的工作频率大于 1GHz，而且增益随着 Vct 的增大而线性减小。在不同的频率下，增益曲线变化不超过 3dB。通过 VGA 的控制，增益限制在一定的范围之内，使得信号动态范围增加，这样就提高了电路的线性度。

4.2 简单 Gilbert 结构混频器的设计

如图 4.6 所示，这是一个 RF 共源输入 Gilbert 结构的混频器，输出接电阻做负载，
这样的目的是为了是线性度好一些，但同时也会带来增益不高，Noise Figure 较大的不好影响，但由于电阻的噪声性能很差，而且我们的输出要求是点频输出，所以后面我们会讨论到用 LC 谐振来代替电阻的优化方法。

Gilbert 混频器中，M8 和 M40 是 RF 信号输入的 MOS 管，它是将电压转换为电流，他们是工作在饱和区，输入动态范围越大电路的线性度就越好；M0，M1，M3，M4 的作用是开关管，它们的栅极是 LO 信号控制的，理想情况下，交信号 LO 大于 0 时开关打开，电流通过，LO 信号小于 0 的时候开关关闭，电流断开。在设计混频器的时候要注意：

1) 在静态工作点上，M0，M1，M3，M4 的漏源电压要远大于 Vgs–Vth，一般选择在 1v 左右，这样 LO 信号的幅度就可以输入足够的大，而且 Vgs–Vth 要近似等于 0，这样才能接近于一个理想的开关管。

2) M8 和 M40 是工作在饱和区，RF 信号的输入动态范围主要就是受到 M8 和 M40 的电压变电流转换线性度的影响，因为这两个 MOS 线性度的好坏决定了整个混频器的线性度的好坏。如果 RF 输入的动态范围超过 M8 和 M40 的饱和区范围，M8 和 M40 将工作在非线性区，输出的电流也不再与输入电压保持正比关系。所以在 RF 输入信号幅度一定的情况下要尽量增大漏源电压的裕度(Margin)。

在 chartered0.35um 工艺下，对电路进行仿真。参考 SpectreRF 的使用手册中对混频器仿真的介绍，我们可以得到混频的以下特征曲线。

图 4.7 Harmonic Distortion with PSS(从上往下为 IF: 1.1G; LO: 1.9G, -4dBm; RF: 800M, -10dBm)
如图 4.7 所示，我们对电路做谐波分析，从图中我们可以看到，LO 信号到 RF 和 IF 信号都有穿通，但由于 Gilbert 结构对信号之间的隔离性能很好，各个信号之间穿通的抑制都大于 30dB。这是在使用电阻负载的情况，如果用 LC 负载，那么抑制穿通的效果更好。

图 4.8 Noise Figure with PSS and Pnoise

如图 4.8 所示，这是将电路的 Noise Figure 从 1k 到 1.1G 之间进行扫描，可以看到在 1.1G 的时候的 Noise Figure 为 12.5dB，能够满足上变频的要求。

图 4.9 Conversion Gain with PSS and PXF
如图 4.9 所示，我们对电路的增益进行分析，在 800M 频率点的时候，输出电压增益为 5.7dB。这个增益不是很大，主要是因为输出负载用的是电阻，如果换用做 LC 谐振，那么增益会有很大的改善。

电源电压对输出信号的影响很小，电源上的噪声幅度至少被抑制掉 66dB。

由图中我们可以看到，电路的 1-dB 衰减抑制点在－3.44107dBm，RF 信号幅度低于这个值就不会有线性失真。
图 4.11 Third intermodulation Point with swept PSS and PAC

三阶交调失真点在 5.4417dBm，也就是说只要干扰信号的幅度不大于 -5.4417dBm，输出的 IF 信号就不会线性失真。仿真结果如表 1 所示

<table>
<thead>
<tr>
<th>参数</th>
<th>值</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Frequency</td>
<td>800MHz</td>
</tr>
<tr>
<td>LO Frequency</td>
<td>1.9GHz</td>
</tr>
<tr>
<td>IF Frequency</td>
<td>1.1GHz</td>
</tr>
<tr>
<td>Input LO power</td>
<td>-4dBm</td>
</tr>
<tr>
<td>Conversion Gain (Voltage)</td>
<td>5.7dB</td>
</tr>
<tr>
<td>Noise Figure (dB)</td>
<td>12.5dB</td>
</tr>
<tr>
<td>Input 1-dB compression point</td>
<td>-3.44107dBm</td>
</tr>
<tr>
<td>Input Third Intermodulation point</td>
<td>5.4417dBm</td>
</tr>
<tr>
<td>Voltage Supply</td>
<td>3.3V</td>
</tr>
<tr>
<td>Total Current</td>
<td>11.28mA</td>
</tr>
<tr>
<td>LO-RF/LO-IF feed-through</td>
<td>< -48dB</td>
</tr>
</tbody>
</table>

表 1 混频器仿真结果
4.3 宽带混频器线性度的提高

如图4.6所示，对于窄带的混频器来说，我们可以通过在M8和M40的源级上接电感和用LC取代电流源的方法来提高线性度[22]，但对于宽带混频器的设计来说这些方法都不能采用。动态范围的定义是输入信号的最大幅度与噪声基数（noise floor）之比。前面我们用VGA限制增益来提高线性度，这里我们同样可以采用这种方法来提高Mixer的线性度。假设这种方法可行，那么在输入动态范围很大，增益又不高的情况下，接 RF信号输入的对管的噪声性能和失真对混频器的影响就会比一般情况下的混频器显得尤为重要。

对于Gilbert混频器来说，LO直流工作点电压的大小也会影响到混频器的线性度性能。如果 LO直流工作点电压足够大，即

$$V_{gs} - V_{th} \approx 0$$ \hspace{1cm} (4.4)$$

那么开关管的工作就会接近与理想的开关，这样整个混频器的IP3性能就只取决于RF输入对管将电压转换为电流的线性度的好坏。所以，为了保证开关能够接近理想状态，就必须注意LO直流工作点电不能过大，否则开关管就会过驱动，过驱动会造成一些很不好得现象，比如会使开关管不能工作在理想状态下，而且如果有毛刺在 LO信号上，那么很容易就使得管子离开饱和区，这对混频器的线性度影响很不好，即使管子还是工作在饱和区以内，这个毛刺也会被放大到输出中频上面去，所以LO的直流工作点电压足够大就可以，不要超过太多。

![图4.12 Improved Double-Balanced Mixer](image)
在 Tuner 系统中，噪声系数的要求很容易满足，一般不高于 12dB 就满足系统的要求了。最难满足的是系统对 Mixer 的线性度要求，尤其是上变频的 Mixer，一般要达到 13dBm，而对于增益要求却相对来说不是那么高，达到 5dB 也就足够了，因此我们有了如图 4.12 所示的改进结构的原理图。图中将 R 负载改为 LC 负载，我们可以将 LC 谐振在 IF 输出信号的频率，这样既可以增加增益，起到滤波器的作用，而且 LC 没有直流压降，这样可以增大输入信号的动态范围，从而提高电路的线性度。在 RF 输入对管的 source 端接电阻，起到 source degenerate 的作用，这样做是牺牲电路的增益特性来换线性度。

4.4 增益，IIP3 和噪声系数的简单计算

我们可以通过一些简化的计算来理论分析 Mixer 的各个参数[23]，和相互制约的情况。

$$G_T = 10 \cdot \log\left(\frac{|Z_c| \cdot R_s}{(R_e + \frac{1}{g_m})^2}\right) - 20 \cdot \log\left(\frac{\pi}{2}\right)$$ (4.5)

$$IIP3 = 10 \cdot \log\left(\frac{2 \cdot (R_e \cdot I_c) \cdot \frac{1}{1mW}}{V_T \cdot R_s}\right)$$ (4.6)

$$NF = 10 \cdot \log\left(1 + \frac{2 \cdot (r_{bb} + R_s)}{R_e} \cdot \frac{g_m}{\beta(\phi)} \cdot \frac{1}{\sqrt{2}} \cdot \frac{R_s}{\beta(\phi)} \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}\right) + 20 \cdot \log\left(\frac{\pi}{2}\right)$$ (4.7)

这些公式是应用在 RF 信号输入对管 M11 和 M21 上的。我们假设方波信号控制开关是理想的转换情况，所以除以 $\frac{\pi}{2}$ 的系数。这些公式在一定的误差允许范围之内是成立的，如果要更加精确的结果就必须通过给器件建模，然后仿真，并且在仿真中考虑开关的非理想情况。

通过 IIP3 的计算公式，我们可以确定 R_{elc} 的值。为了满足增益的要求，R_S 必须比 Z_C 的模小。由于 R_{elc} 的值在 IIP3 中已经选定，而输入阻抗会受到封装和 PCB 板寄生电容的等等不确定因素的影响，所以 Noise Figure 只能要求 M11 和 M21 的 β 值要大，而 r_{bb} 的值要小。做一阶近似的时候，开关的非理想情况不用考虑。
4.5 改进的宽带上变频混频器的设计

如图 4.13(a)所示，这是改进后的上变频混频器电路。它是由 Double-balanced Gilbert Mixer 结构组成的，其中 M₃~M₈ 组成了 Mixer core，M₉ 和 M₁₀ 则是 IF 信号输出的 buffer。
用来做输出阻抗匹配，IF 的负载也由电阻换成了 LC 谐振，并且谐振频率是在 IF 信号输出
的频率上，不仅提高了增益还起到了滤波的作用。除了 Mixer Core 以外，为了测试的方便，
各个管子的直流偏置电压都由片内的偏置电路来提供，如图 4.13(b)所示。

Mixer core 的电路设计是考虑到 Noise Figure，线性度，功耗以及开关管和 RF 输入
对管的直流工作点等等各个性能参数之间的制约来选定的。在调整管子参数的时候，尽量
选用大尺寸的器件以减小转换损失，提高噪声性能，因为大尺寸器件的电阻小，转换损失
小而且热噪声小[24]。但同时，器件的尺寸又受到功耗和 LO 信号驱动能力的限制，因为大
尺寸器件需要大的栅极驱动能力，这就要求 LO 信号要有相应的比较大的驱动能力。管子
驱动能力的大小对线性度影响不大，但是 LO 信号的驱动能力会限制 LO 交流信号的输
入动态范围，而 IIP3 的性能好坏是和 LO 交流信号的动态范围大小成正比的。所以在选择
器件尺寸的时候，又不能无限的调大管子的尺寸。前面我们还分析过，LO 驱动的开关管要
工作在介于截止和饱和两种状态之间的临界状态，这就要求 LO 信号的直流偏置电压不
能太大也不能太小

$$V_{gs} - V_{th} \approx 0$$ \hspace{1cm} (4.8)

满足(4.8)式有又很多有点，它既可以使得开关管接近理想状态，有可以实现低电压工作，
而且可以降低功耗，但是如果要实现低电压，就会有信号失真问题存在[25]。开关管的
Vds 要在 1V 左右，这样 LO 信号的输入动态范围才能很大。RF 信号的输入对管是工作在
饱和区内的，直流情况下 Vgs-Vth 的饱和电压裕度就决定了 RF 信号输入的动态范围，提高
这个裕度就可以提高电路的线性度。

LC 谐振计算公式如下,

$$f_{IF} = \frac{1}{2\pi\sqrt{LC}}$$ \hspace{1cm} (4.9)

我们可以选定电容值为 2pf，输出中频值为 1.1G，那么计算的电感要选为 10nH。

最后仿真结果如表 2 所示：

<table>
<thead>
<tr>
<th>RF Frequency</th>
<th>56MHz~856MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO Frequency</td>
<td>1.156GHz~1.956GHz</td>
</tr>
<tr>
<td>IF Frequency</td>
<td>1.1GHz</td>
</tr>
<tr>
<td>Input LO power</td>
<td>-4dBm</td>
</tr>
<tr>
<td>Conversion Gain(Voltage)</td>
<td>5dB</td>
</tr>
</tbody>
</table>
表 2 改进的混频器仿真结果

<table>
<thead>
<tr>
<th>参数</th>
<th>值</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise Figure</td>
<td>12~15dB</td>
</tr>
<tr>
<td>Input 1-dB comporession point</td>
<td>-3dBm</td>
</tr>
<tr>
<td>Input Third Intermodulation point</td>
<td>0.1dBm</td>
</tr>
<tr>
<td>Voltage Supply</td>
<td>3.3V</td>
</tr>
<tr>
<td>Total Current</td>
<td>15mA</td>
</tr>
<tr>
<td>LO-RF/LO-IF feed-through</td>
<td>< -50dB</td>
</tr>
</tbody>
</table>

之所以有的性能和表 1 比较起来有所下降是因为我在设计中加上了输出匹配电路，下面我们就来具体分析阻抗匹配的问题。为了进行测试，就必须考虑阻抗匹配的问题，即所有端口（RF，LO，IF）的输入输出阻抗都要为 50Ω，否则输入的信号会被反射会信号源，输出的信号没有办法被探测到。要进行阻抗匹配，首先考虑输入阻抗匹配。因为 RF 和 LO 都是栅极输入，我们都知道 CMOS 的栅极到源极之间有寄生电容，在高频情况下这个电容不能被忽略，在阻抗匹配的时候必须用电感串联的方法来抵消掉电容的影响[26]。先以 RF 端口为例，我们对电路进行仿真，对 RF 端口进行 smith 参数 (sp) 扫描得到的 |S11| 参数是一个电容和电阻相串联的结果，通过计算要串联一个 100nH 的电感，并且要串联一个 26Ω 的电阻才能达到阻抗匹配。我们测试是将芯片直接 bonding 到 PCB 板上，所以考虑到 bonding wire 上的电感（1mm 约 1nH），实际需要串联的电感是 95nH，这个电感很大没法在片内实现，所以需要用到片外电感。LO 信号也是同样获得阻抗匹配的，只是这种方法只能测点频的输入，所以还有很大的局限性。对于 IF 输出就相对容易实现，我们可以在输入加一个 buffer 电路，然后调整 buffer 通路上流过的电流来调整源级跟随 MOS 管的跨导，

\[g_m = 50\Omega \] \hspace{1cm} (4.10)

满足 (4.10) 式的要求即可，这个是很容易实现的，只是每条之路上的电流会非常的大，大约有 10mA，这样会增大整个电路的功耗。如果只是为了测试而加上 buffer 电路，对于 Mixer 的设计来说没有什么不好的影响。

偏置电路的设计是采用了一种比较简单的不受 VCC 变化影响的带隙基准源电路，并带有自启动功能[27]。如图 4.14 所示
与电源无关带自启动的偏置电路

\[V_{GS1} = V_{GS2} + I_{D2}R_S \] (4.11)

\[V_{TH1} = \sqrt{\frac{2I_{out}}{\mu_n C_{ox}(W/L)_N}} + V_{TH2} + I_{out}R_S \] (4.12)

忽略体效应，我们有

\[\sqrt{\frac{2I_{out}}{\mu_n C_{ox}(W/L)_N}}(1 - \frac{1}{\sqrt{K}}) = I_{out}R_S \] (4.13)

因此

\[I_{out} = \frac{2}{\mu_n C_{ox}(W/L)_N} \frac{1}{R_S^2} \frac{1}{(1 - \frac{1}{\sqrt{K}})^2} \] (4.14)

自启动电路是在刚刚上电的时候提供一个电流的通路，等到电路正常工作的时候 M5 就不会工作，处于关断的状态。这种方法只有在

\[V_{th1} + V_{th5} + V_{th3} < V_{CC} < V_{GS1} + V_{th5} + V_{GS3} \] (4.15)

后一个条件是为了保证电路在正常工作的时候，M5 能够截止所加上的条件。

总共两组这样的偏置电路分别给 RF 差分信号和 LO 差分信号提供直流偏置，所以 RF 和 LO 信号差分信号输入的时候就要用一个大电容将它们自己的直流偏置电压隔掉。

4.6 电路测试

本设计中的混频器是在 Chartered0.35um 的 CMOS 工艺中 tape out，最终的版图如图 4.15 所示，芯片的面积是 751nm×460nm。设计中所有的电感和电容都改为片外接，这样可以方便在测试的时候进行微调，偏置电路内置，这样就不用再在 PCB 上搭一个电...
阻分压电路了，这样就简化了 PCB 的设计。由于信号源和测试仪器都是单端器件，所以必须再外接一个单端转双端的转换器，这种转换器叫做 Transfer，也叫 Balun。

由于要进行输入阻抗匹配，所以没有办法在 56MHz 到 856MHz 的宽频带上进行测试，只能选择一个点频输入点频输出。测试的原理图如图 4.16 所示，通过 Smith 圆图仿真测
得输入的要求是 RF 信号频率为 760MHz，LO 信号为 400MHz，输出频率为 IF 信号为 360MHz，因为在这个频率点上从仿真的结果来看，发现输入阻抗匹配的情况最好，如图 4.17 所示。

(a) (b)

图 4.17 Smith 圆图仿真结果 (a)RF port (b) LO port

考虑到 PCB 板上 bonding wire 电感的作用，各个端口串连的电感分别为 RF 串连 97nH, LO 串连 195nH，IF 的 LC 端是用 60nH 的电感和 3pf 的电容相并联。计划将芯片直接 bonding 到 PCB 板上，这样可以减小寄生电容的影响，而且可以比较容易估计 bonding wire 的电感作用 (1mm 约 1nH)。由于芯片 bonding 到 PCB 板上的工作是找专门部门来完成，但由于种种问题，导致这个步骤无法成功进行，所以尽管所有的准备工作都完成但最终测试没能如期完成。希望我的测试计划能对以后做混频器测试的同学有一点启示。
第五章 总结

5.1 论文总结

本论文的重点是设计用在 double conversion 的 TV tuner 系统中宽带上变频混频器的设计，并用普通的 CMOS 工艺来实现。我们采用的是 Gilbert 结构的 active Mixer，原因是它的增益比较大，Noise Figure 小，而且 Port-to-Port 的隔离度比较好。设计的难点在于提高电路的线性度和满足宽带输入的要求。

在第一章，我们介绍了通信系统的结构和几种不同原理的接受端结构，分析了各个结构的缺点和优点，在第一章的结尾提出了本论文的设计目的，主要是要设计出在 double conversion 的 TV tuner 结构中比较难的 up-conversion mixer，它的输入带宽是 750MHz，而且增益要求达到将近 10dB，实际设计中电路增益达到了 6dB。提出了为了在宽带输入范围内提高系统的线性度，必须在 Mixer 前面加上 VGA 以调整输入信号的幅值，控制整个电路的增益。

第二章和第三章中详细介绍了设计混频器的各种参数的优化办法，并结合了具体的各种混频器电路结构来分析各个参数优化以及相互之间的制约，主要介绍了 Active 和 Passive 两种结构的混频器，通过对每种电路结构的分析得出要采用 Gilbert 结构混频器作为本论文中的设计电路的结论。

第四章就在前面分析的基础上对 VGA 和上变频混频器进行设计。VGA 电路经过优化改进可以在 1V~3.3V 的控制电压范围内对增益进行适当的衰减，并且采用三级衰减结构使得增益是控制输入电压在 dB 单位上是成线性关系的。接下来就是本论文设计的重点，宽带混频器的实现，包括怎样对电路进行各种参数的仿真，和对实际设计的简单 Gilbert 结构的电路的仿真结果和分析。通过对混频器线性度的优化，输入输出阻抗的优化，IF 输出中频负载的 LC 代替电感负载的优化，得到了我们最终的设计电路。设计的电路在 Chartered 0.35um 的 CMOS 工艺中实现，接下来就是如何对芯片进行测试，本设计中提出了具体的测试方案，但由于条件的限制和对测试了解的局限性，无法做宽带输入测试，只能对混频器的点频进行测试。

总的来说，在 56M~856MHz 的频率范围内，电路能够满足系统对上变频混频器提出
的 Noise Figure，IIP3 和 Conversion Gain 的要求。

5.2 展望和建议

通过这次毕业设计的工作，我认识到 RF 电路设计的艰难性，初次进行 RF 电路的设计使我认识到测试在 RF 电路中有着举足轻重的作用，由于时间安排的不当，VGA 没有来得及流片，混频器测试进行得很仓促。这次只进行了一次流片，这对与 RF 电路设计来说是远远不够的，要达到 TV tuner 整个系统各个模块正常工作，还有很长的路要走。

而且还有很多可以改进的地方，比如说 RF 输入对管采用共栅输入的结构可以提高线性度；本设计中的 VGA 和上变频混频器合并起来进行流片的工作也可以，看看这样组合的效果是否能够大大的提高系统的线性度；还有完善测试各个参数的方法和所需要的仪器等等。
致 谢

在本文的设计过程中，得到了众多老师、同学的无私指导与帮助。在研究生的学习中，仅仅靠我一个人是不可能顺利完成学业的，在这里我要感谢帮助过我的人。

首先要感谢的是闵昊老师，闵老师是我的指导老师，在我三年的研究生学习中给了我无数的关心和教诲，并不断的给我指明研究的方向。当初是闵老师给了我信心和鼓励，使得我能够坚定不移的沿着 RF 领域的研究方向走下去，并且给我提供了良好的工作和学习环境使我的研究能够如期顺利的开展。此外，在生活方面，我也经常得到闵老师的热心帮助。

其次，我要感谢同组的成员，是他们给了我一个融洽的研究环境，彼此互相帮助，共同进步。我是 TV tuner 组里面唯一的硕士生，在我遇到技术上的困难无法解决的时候，唐长文和何捷常常热情的同我交流设计思想，解决设计中遇到的各种问题，在此我要表示衷心的感谢；在阻抗匹配问题无法突破的时候，我得到了菅洪彦同学及时的帮助，帮我讲解了 sp 参数的分析方法并在其它方面给我提供了很多对我设计有益的文档；杨丰林同学虽然进入我们时间不长，但是他在 RF 方面的设计和测试经验给了我不少的帮助。

还要感谢李强、韩益锋、王杨同学，感谢他们在 PCB 板设计和电感器件制作上给我提供的帮助。同实验室的师兄弟们也给我了一个良好的学习氛围，感谢他们陪我一起走过了这段难忘的岁月。

在复旦的三年研究生生活使我受益终生，在这期间我取得了不小的进步，满怀信心的踏入社会。我会好好珍惜这三年里来之不易的进步和与各位师兄弟、老师的友谊，争取以后更大的成功。最后我要感谢我的父母，没有他们的无私奉献就没有我现在的一切。
参考文献