
 

  

 

1.0  Supplemental Notes on Planar Spiral Inductances

 

1.1  Better analytical formulas for inductance

 

By returning to first principles (indeed, by following a prescription outlined by Maxwell 
himself), Dr. S. S. Mohan has recently developed remarkably simple, but highly accurate, 
analytical formulas for the inductance of planar spirals. The following equations, devel-
oped as part of Mohan’s Stanford Ph.D. thesis work, should replace those given in section 
of the text.

As noted in the book, planar spirals with a variety of geometries have been used (e.g., cir-
cular, octagonal, hexagonal and square). The inductance and 
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 values attainable are very 
much second-order functions of shape (despite much lore to the contrary), so engineers 
should feel free to use their favorite shape with relative impunity. A square spiral is the 
simplest to lay out, and is therefore the overwhelming favorite of lazy engineers (of which 
the author is a proud member). Octagonal spirals are definitely better (order of 10%), 
though, and are therefore often favored when layout tools facilitate it.

The formulas for all of these shapes can be cast in a simple unified form:
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where 

 

n

 

 is the number of turns, 

 

d

 

avg

 

 is the average of the inner and outer diameters, and 

 

ρ

 

 
is a 

 

fill factor

 

, defined as
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From this last equation, you can see why the term “fill factor” is appropriate: 

 

ρ

 

 approaches 
unity as the inductor windings fill the entire space, and approaches zero as the inductor 
becomes progressively hollower.

The various coefficients 

 

c

 

n

 

 are a function of geometry, and are given in the following 
table:
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TABLE 1. Coefficients for inductance formula

 

Shape

 

c
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c

 

2
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3

 

c

 

4

 

Square 1.27 2.07 0.18 0.13

Hexagonal 1.09 2.23 0.00 0.17

Octagonal 1.07 2.29 0.00 0.19

Circle 1.00 2.46 0.00 0.20
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To an excellent approximation, the coefficient 

 

c

 

1

 

 is simply the area for a given outer 
dimension, normalized to the area of the largest circle that can be inscribed within the lay-
out. The factor 

 

c

 

2

 

 is the primary term, while 

 

c

 

3

 

 and 

 

c

 

4 

 

may be considered first- and sec-
ond-order correction factors, respectively. When all four factors are used, the equations 
are typically accurate to within a couple of percent (and almost never in error by more 
than five percent), thus generally obviating the need for a full electromagnetic field solver 
to evaluate the inductance of such structures.

On those rare occasions where other regular polygons are of interest, one may use the fol-
lowing analytical formula:
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where 

 

A

 

out

 

 is the outer area, and 

 

N

 

 is the number of sides of the polygon. This formula is 
simply a restatement of Eqn. 1, with analytical approximations used for the coefficients 
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1

 

, 

 

c
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and
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. The coefficient 

 

c

 

3

 

 is set to zero, which is a good approximation for all regular 
polygons with more than four sides. This analytical formula is only one or two percent 
more inaccurate than the tabulated one.

The 

 

Q

 

 of a planar spiral inductor is often estimated roughly by using a simple skin effect 
formula to compute an approximation of the effective resistance. This approach can fail 
because it neglects the influence of one turn’s field on the current distribution in adjacent 
turns. Hence, one should expect the estimate to be a rather crude one, on the optimistic 
side.

Generally, somewhat hollow inductors have the highest 

 

Q

 

 because the innermost turns 
tend not to contribute much magnetic flux, but do contribute significant resistance. Hence, 
removing them is a good idea in general. While there is no simple rule as to what is opti-
mum in all cases, a reasonable rule of thumb is to have a 3:1 ratio between the outer and 
inner diameters (corresponding to a fill factor of about 0.5). Fortunately, the optimum con-
ditions are relatively flat, so the rule of thumb is satisfactory for many practical cases.

 

1.2  Better analytical formulas for loss

 

Mohan’s work also provides improved formulas for the effective resistance in series with 
the inductor. As mentioned in the text, this loss arises from some combination of skin-
effect conductor dissipation and eddy-current substrate loss. The formula given in the text,

 

1.  S. S. Mohan et al., “Simple Accurate Inductance Formulas,” 

 

IEEE J. Solid-State Circuits

 

, Feb. 2000.

L
µn2davgAout

πdout
2

ln

2.46
1.56

N
−

ρ 
 
 
 

0.20
1.12

N2
− 

  ρ2+≈



 

 

 

, (4)

 

accounts only for skin loss from the surface of the conductor that faces the substrate. As 
mentioned in the previous section, it neglects skin loss from the other surfaces, and also 
neglects substrate loss. Neglect of the latter is generally justified in those cases where the 
substrate is lightly doped. However, many IC processes employ quite heavily doped 
wafers (e.g., 10m

 

Ω

 

-cm), and eddy current loss in the substrate must be considered in such 
cases.

Although the analysis is quite complicated, and numerous approximations are cascaded to 
make the analysis tractable, the resulting formula for the resistance is not too unwieldy 
(again, see reference [1]):
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where 

 

σ

 

sub

 

 is the substrate conductivity, 

 

d

 

avg

 

 is the average of the inner and outer diame-
ters, 

 

ρ

 

 remains the fill factor, and 

 

e

 

 is our old friend (2.7182818...). The quantity 

 

z

 

n, ins

 

 is 
the total thickness of the insulation between the spiral proper and the heavily-doped por-
tion of the substrate, normalized to the average inductor diameter. That insulation is gener-
ally a combination of oxide and lightly-doped semiconductor, and can be treated as a 
uniform, magnetically transparent material. Similarly, 

 

z

 

n, sub

 

 is the substrate skin depth, 
also normalized to the average inductor diameter.

The total series resistance is then the sum of 

 

R

 

S

 

 and 

 

R

 

eddy

 

. The other model elements 
remain unchanged from those given in the text.

It is worthwhile examining Eqn. 5 to extract some intuition from it. First, note that the 
resistance due to eddy current loss in the substrate is proportional to the square of fre-
quency, and to the square of the number of turns. Perhaps most important is the propor-
tionality to the 

 

cube

 

 of the (average) diameter.

 

2

 

 It is a natural tendency to use wide 
conductors to mitigate conductor loss (see Eqn. 4), but we see that beyond a certain point, 
eddy current loss dominates, and 

 

Q

 

 actually degrades rapidly with further increases in 
size. For heavily doped CMOS substrates, then, one must often use inductors with smaller 
outer diameters (and hence narrower conductors) than is common practice in technologies 
with semi-insulating substrates (e.g., GaAs). Failure to recognize the existence of this 
tradeoff has led to a great spread in reported results.

 

2.  For a fixed inductance, one may use Eqn. 4 to deduce that the eddy resistance then grows approximately 
as the square of the average diameter.
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