Equivalent Resistance

M1 is in the saturation zone.

Conclusion

Seen from Drain:

If
$$g_{\rm m}R_{\rm S} >> 1$$
,

If
$$g_{\rm m}R_{\rm S} \ll 1$$
,

$$R = r_o + R_S + g_m r_o R_S$$

$$R \approx g_{\rm m} r_{\rm o} R_{\rm S}$$

$$R \approx r_{\rm o}$$

Seen from Source:

If
$$R_D >> r_o$$
,

If
$$R_{\rm S} \ll r_{\rm o}$$
,

$$R = [(1/g_{\rm m})||r_{\rm o}](1+R_{\rm D}/r_{\rm o})$$

$$R \approx R_{\rm D}/(g_{\rm m}r_{\rm o})$$

$$R \approx 1/g_{\rm m}$$

DC Gain

Hints for gain calculation:

First, find the equivalent transconductance;

Second, find the output resistance;

Third, find their multiplication.

M1, M2, M3 are in the saturation zone.

Pole

M1 is in the saturation zone, r_o is very large, $R_D << r_o$.

- 1. DC gain?
- 2. Poles?

Frequency Response

M2 is in the saturation zone.

Example

M1, M2 saturated $1/g_{\rm m1} = 1/g_{\rm m2} = 150~\Omega$ $\lambda_1 = \lambda_2 = 0~{\rm V}^{-1}$ $C_{\rm gs1} = C_{\rm gs2} = 250~{\rm fF}$ $C_{\rm gd1} = C_{\rm gd2} = 80~{\rm fF}$ $C_{\rm db1} = C_{\rm db2} = 100~{\rm fF}$ Find all the poles.

Thank you for your attention!