

失调和CMRR: 随机因素和系统因素

●随机失调和CMRR_r

- ●系统失调和CMRR_s
- CMRR与频率的关系
- 设计规则
- MOST与双极型晶体管的比较

Ref.: W. Sansen : Analog Design Essentials, Springer 2006 Pelgrom, JSSC Oct.1989, 1433-1439 Croon, JSSC Aug.02, 1056-1064 Croon, Springer, 2005

失调的定义

由失调引起的增益误差

 $\frac{V_{\rm in} - V_{\rm os}}{R_{\rm S}} = \frac{V_{\rm os} - V_{\rm out}}{R_{\rm F}}$

增益由100倍变为59倍。

由失调引起的flash-ADC良率下降

Ref.: Pelgrom, IEDM 1998, pp.789.

随机失调: 失配

Ref.: Keyes, JSSC Aug. 1975, 245-247 Shyu, JSSC Dec 1984, 948-955 Lakshmikumar, JSSC Dec 1986, 1057-1066 Pelgrom, JSSC Oct.1989, 1433-1439 Croon, JSSC Aug. 2002, 1056-1064

对于0.25 µm的nMOST

阈值电压的标准方差

阈值电压的失配系数Avt

随机失调: 失配

$$\frac{\Delta K'}{K'} = \frac{A_{K'}}{\sqrt{WL}}$$
 $A_{K'} \approx 0.0056 \,\mu\text{m pMOST}$ 将+50%

$$\frac{\Delta W/L}{W/L} = A_{WL} \sqrt{\frac{1}{W^2} + \frac{1}{L^2}} \quad A_{WL} = 0.02 \ \mu \text{m} \text{ pMOST} + 50\%$$

 $\frac{\Delta \gamma}{\gamma} = \frac{A_{\gamma}}{\sqrt{WL}} \qquad \qquad A_{\gamma} = 0.016 \ \mu \text{m} \quad \text{pMOST} \text{\#-25\%}$

Ref.: Pelgrom : JSSC Oct.1989, pp.1430-1440

复旦大学 射频集成电路设计研究小组

如果 $V_{\rm B}=V_{\rm S}$,忽略

nMOST的失配系数

工艺 L	(µm)	2.5	1.2	0.7	0.5	0.35	0.25
t _{ox}	(nm)	50	25	15	11	8	6
A _{VT}	(mVµm)	30	21	13	7.1	6 ⊑	⇒ 0
A_{WL}	(%µm)	2.5	1.8	2.5	1.3	2 ¤	⇒ 1.8
S _{VT}	(mV/mm)	0.3	0.3	0.4	0.2		
S_{WL}	(%/mm)	0.3		0.2	0.2		

差分对的随机失调

电流镜的随机失调

电流镜的其他失调

电流的失配

$$\begin{split} I_{\rm DS} &= \frac{\beta}{2} (V_{\rm GS} - V_{\rm T})^2 \qquad \beta = KP \frac{W}{L} = \frac{K}{n} \frac{W}{L} \\ &= \frac{\Delta I_{\rm DS}}{I} = \frac{\Delta \beta}{\beta} - \Delta V_{\rm T} \frac{2}{V_{\rm GS} - V_{\rm T}} \\ \sigma^2 (\frac{\Delta I_{\rm DS}}{I_{\rm DS}}) &= \sigma^2 (\frac{\Delta \beta}{\beta}) + \sigma^2 (\Delta V_{\rm T}) \frac{4}{(V_{\rm GS} - V_{\rm T})^2} \\ &= \frac{1}{(nkT/q)^2} \quad \text{Iff BQZZ} \\ &= \frac{(\frac{g_{\rm m}}{I_{\rm DS}})^2}{(\frac{g_{\rm m}}{I})^2} \quad \text{KP} \frac{3}{2} \text{KP} \frac{M}{2} \\ &= \frac{1}{2} \text{KP} \frac{M}{2} \text{KP} \frac{M}{2} \text{KP} \frac{M}{2} \\ &= \frac{1}{2} \text{KP} \frac{M}{2} \text{KP} \frac{M}{2} \\ &= \frac{1}{2} \text{KP} \frac{M}{2} \text{KP} \frac{M}{2} \text{KP} \frac{M}{2} \\ &= \frac{1}{2} \text{KP} \frac{M}{$$

弱反型和强反型漏电流失配

差分对的随机CMRR-2

 $A_{\rm dc} = rac{V_{\rm od}}{V_{\rm ic}}\Big|_{V_{\rm id}=0}
eq 0$ $V_{\rm ic} = V_{\rm inc} \Longrightarrow i_{\rm c} = \frac{V_{\rm inc}}{R_{\rm B}}$ $V_{\rm od} = \Delta R_{\rm I} i_{\rm c}/2$ $A_{\rm dc} = rac{\Delta n_{\rm L}}{2R_{\rm R}}$ $=\frac{2g_{\rm m}R_{\rm B}}{\Delta R_{\rm I}/R_{\rm I}}$ CMRR

差分对的随机CMRR-3

随机失调和CMRR的关系

$$V_{\rm osr} = \Delta V_{\rm T} + \frac{V_{\rm GS} - V_{\rm T}}{2} \left(\frac{\Delta R_{\rm L}}{\overline{R_{\rm L}}} + \frac{\Delta K'}{\overline{K'}} + \frac{\Delta W/L}{\overline{W/L}}\right)$$

$$V_{osr}CMRR = \frac{V_{GS} - V_{T}}{2} 2g_{m}R_{B} = I_{B}R_{B} = V_{E}L_{B} = 5...15 V$$

 $V_{osr}CMRR = 10 V$

随机失调和CMRR的关系

$$v_{osr}CMRR_{r} \approx V_{E}L_{B} \approx 10 \text{ V} \quad (\sim L_{B})$$

- 10 mV 60 dB ≈ 10 V MOSTs
 - 1 mV 80 dB≈10 V 双极型晶体管
- 10 µV 120 dB≈10 V 修正:使用激光修正 使用熔丝修正

Low offset = High *CMRR*

- 随机失调和CMRR_r
- ●系统失调和CMRR_s
 - CMRR与频率的关系
 - 设计规则
 - MOST与双极型晶体管的比较

电流镜的系统失调

差分对的系统CMRR-1

差分对的系统CMRR-2

差分对的系统CMRR-3

总 CMRR

复旦大学 射频集成电路设计研究小组

-1328-

折叠共源共栅CMOS OTA的失调

- 随机失调和CMRR_r
- ●系统失调和CMRR_s
- CMRR与频率的关系
- 设计规则
- MOST与双极型晶体管的比较

CMRR与频率的关系

- 随机失调和CMRR_r
- ●系统失调和CMRR_s
- CMRR与频率的关系
- 设计规则
- MOST与双极型晶体管的比较

低失调的版图规则

- 1. 属性相同
- 2. 等温
- 3. 增加尺寸
- 4. 减小距离
- 5. 方向相同
- 6. 相同的面积/周长比
- 7. 圆形
- 8. 中心对称布局
- 9. 末端加亚元
- 10. 通常三极管匹配性更好

Ref.: Hastings, "The Art of Analog Layout" Prentice Hall 2001 R. Soin, ..."A-D Asics, ... "Peregrinus, 1991

低失调的版图规则

- 1. 属性相同
- 2. 等温
- 3. 增加尺寸
- 4. 减小距离
- 5. 方向相同
- 6. 相同的面积/周长比
- 7. 圆形
- 8. 中心对称布局
- 9. 末端加亚元
- 10. 通常三极管匹配性更好

放置在相同的等温线上

Ref.: Solomon, JSSC Dec 74, 314-332

低失调的版图规则

- 1. 属性相同
- 2. 等温
- 3. 增加尺寸
- 4. 减小距离
- 5. 方向相同
- 6. 相同的面积/周长比
- 7. 圆形
- 8. 中心对称布局
- 9. 末端加亚元

10. 通常三极管匹配性更好

电阻版图

CMOS工艺的 源/漏扩散电阻

Ref.: Laker, Sansen : Design of analog ..., MacGrawHill 1994 Table 2-6

电阻

Process	Туре	ρ□ Ω/□	absolute accuracy percent	temperature coefficient percent/°C	voltage coefficient percent/V	breakdown voltage V
Bipolar	base diffusion	150	10	0.12	2	50
	emitter diffusion	10	20	0.02	0.5	7
	pinch resistance	5 k	40	0.33	5	7
	epi layer	1 k	10	0.3	1	60
	aluminum	50 m	20	0.01	0.02	90
	ion-implantation	2 k	1	0.02	0.2	20
	ion-implantation	200	0.3	0.02	0.05	20
CMOS	S/D diffusion	20-50	20	0.2	0.5	20
	well	2.5 k	10	0.3	1	20
	poly gate	50	20	0.2	0.05	40
	poly resistance	1.5 k	1	0.05	0.02	20
	aluminum	50 m	20	0.01	0.02	90
Thin film	NiCr(Ta)	200	1	0.01	0.01	90
	aluminum	50 m	20	0.01	0.02	90

电阻的失配与尺寸的关系

复旦大学 射频集成电路设计研究小组

唐长文

Process	Туре	C nF/cm ²	absolute accuracy percent	temperature coefficient percent/°C	voltage coefficient percent/V	breakdown voltage V
Bipolar	C _{CB}	16	10	0.02	2	50
	C _{EB}	50	10	0.02	1	7
	C _{CS}	8	20	0.01	0.5	60
CMOS	C _{CS} (50 nm)	70	5	0.002	0.005	40
	$m{C}_{m,poly}$	12	10	0.002	0.005	40
	$m{C}_{poly,poly}$	56	2	0.002	0.005	40
	${m C}_{ m poly, substrate}$	6.5	10	0.01	0.05	20
	$m{C}_{m, substrate}$	5.2	10	0.01	0.05	20
	$c_{poly,substrate}$	6.5	10	0.005	0.05	20

Ref.: Laker, Sansen : Design of analog ..., MacGrawHill 1994 Table 2-7

电容的失配与尺寸的关系

低失调的版图规则

- 1. 属性相同
- 2. 等温
- 3. 增加尺寸

4. 减小距离

5. 方向相同
 6. 相同的面积/周长比
 7. 圆形
 8. 中心对称布局
 9. 末端加哑元

10. 通常三极管匹配性更好

低失调的版图规则

- 1. 属性相同
- 2. 等温
- 3. 增加尺寸
- 4. 减小距离

5. 方向相同

6. 相同的面积/周长比

7. 圆形

8. 中心对称布局

9. 末端加亚元

10. 通常三极管匹配性更好

晶体管对的失配

差

低失调的版图规则

- 1. 属性相同
- 2. 等温
- 3. 增加尺寸
- 4. 减小距离
- 5. 方向相同

6. 相同的面积/周长比

- 7. 圆形
- 8. 中心对称布局
- 9. 末端加亚元

10. 通常三极管匹配性更好

电流镜的匹配

低失调的版图规则

- 1. 属性相同
- 2. 等温
- 3. 增加尺寸
- 4. 减小距离
- 5. 方向相同
- 6. 相同的面积/周长比
- 7. 圆形
- 8. 中心对称布局
- 9. 末端加亚元
- 10. 通常三极管匹配性更好

低失调的版图规则

- 1. 属性相同
- 2. 等温
- 3. 增加尺寸
- 4. 减小距离
- 5. 方向相同
- 6. 相同的面积/周长比
- 7. 圆形

8. 中心对称布局

9. 末端加哑元

10. 通常三极管匹配性更好

差分对的交叉耦合

对全局变化不敏感: 氧化层厚度 衬底掺杂浓度.....

低失调的版图规则

- 1. 属性相同
- 2. 等温
- 3. 增加尺寸
- 4. 减小距离
- 5. 方向相同
- 6. 相同的面积/周长比
- 7. 圆形
- 8. 中心对称布局
- 9. 末端加亚元

10. 通常三极管匹配性更好

电流镜的失配

低失调的版图规则

- 1. 属性相同
- 2. 等温
- 3. 增加尺寸
- 4. 减小距离
- 5. 方向相同
- 6. 相同的面积/周长比
- 7. 圆形
- 8. 中心对称布局
- 9. 末端加哑元
- 10. 通常三极管匹配性更好

- 随机失调和CMRR_r
- ●系统失调和CMRR_s
- CMRR与频率的关系
- 设计规则

• MOST与双极型晶体管的比较

MOST和双极型晶体管的失调

MOST:
$$V_{os} = \Delta V_{T} + \frac{V_{GS} - V_{T}}{2} \left(\frac{\Delta R_{L}}{R_{L}} + \frac{\Delta K'}{K'} + \frac{\Delta W/L}{W/L}\right)$$

Bipolar:
$$V_{os} = \frac{kT}{q} \left(\frac{\Delta R_{L}}{\overline{R_{L}}} + \frac{\Delta I_{s}}{I_{s}} \right)$$
 非常小

1)没有
$$V_{T}$$

2)k $T/q <<(V_{GS}-V_{T})/2$
3)可以激光修正 $\frac{\Delta v_{os}}{\Delta T} = \frac{V_{os}}{T}$

Bipolar:存在基极电流!

偏置电流、基极电流

器件失配的性能极限

器件噪声的性能极限

$$S/N = \frac{V_{pp}^2/2}{4kTR \cdot BW} \qquad S/N = \frac{V_{pp}^2/8}{kT/C}$$
$$P_{min} = \frac{V_{pp}^2}{R} \qquad BW = \frac{1}{RC}$$

 $P_{\min} \approx 8 \mathrm{k} T \cdot BW(S/N)$

高动态范围的噪声与失配

深亚微米CMOS动态范围减小

