

运算放大器的系统设计

目录

●单级OTA的设计

- CMOS密勒OTA的设计
- GBW和相位裕度的设计
- 其他指标: 输入范围、输出范围、SR...

Ref.: W. Sansen : Analog Design Essentials, Springer 2006

CMOS单级OTA: GBW

$$A_{V} = g_{m1} \frac{r_{DS}}{2}$$

如果: $r_{DS2} = r_{DS4} = r_{DS}$

$$BW = \frac{1}{2\pi \frac{r_{DS}}{2}} (C_{L} + C_{n1})$$

$$GBW = \frac{g_{m1}}{2\pi(C_L + C_{n1})}$$

复旦大学 射频集成电路设计研究小组

Ē

CMOS OTA: 最大GBW

复旦大学 射频集成电路设计研究小组

CMOS单级OTA: f_{nd}

 $=rac{g_{m1}}{2\pi(C_{1}+C_{n1})}$ GBW

$$f_{\rm nd} = \frac{g_{\rm m3}}{2\pi C_{\rm n2}}$$

 $C_{n2} \approx 2C_{GS3} + C_{DB3} + C_{DB1}$ $\approx 4C_{GS3}$

 $f_{\rm nd} \approx$ T3

CMOS OTA: f_{nd}

CMOS单级OTA: 设计1

已知: $GBW = 100 \text{ MHz} \ \pi C_{L} = 2 \text{ pF}$ 工艺: $L_{min} = 0.35 \ \mu m \ \kappa_{n} = 60 \ \mu A/V^{2} \ \pi K_{p} = 30 \ \mu A/V^{2}$ 求: I_{DS} 、W、L

 $g_{\rm m} = 2\pi C_{\rm L}GBW = 1.2 \text{ mS}$ $V_{\rm GS} - V_{\rm T} = 0.2 \text{ V}$

$$I_{\rm DS} = g_{\rm m} \frac{V_{\rm GS} - V_{\rm T}}{2} = \frac{g_{\rm m}}{10} = 0.12 \,\,{\rm mA}$$

$$\frac{W}{L} = \frac{I_{\rm DS}}{K' (V_{\rm GS} - V_{\rm T})^2} = 100 \qquad L_{\rm p} = L_{\rm n} = 1 \,\mu{\rm m} \, 考虑增益!$$
$$W_{\rm n} = 50 \,\mu{\rm m} \,\sqrt{W_{\rm p}} = 100 \,\mu{\rm m}$$

复旦大学 射频集成电路设计研究小组

唐长文

目录

• 单级OTA的设计

- CMOS密勒OTA的设计
- GBW和相位裕度的设计
- 其他指标: 输入范围、输出范围、SR...

CMOS密勒OTA

CMOS密勒OTA: 小信号

$$GBW = 1 \text{ MHz}$$

 $C_{L} = 10 \text{ pF}$
 $R_{L} = 10 \text{ k}\Omega$

 $g_{m1} = 7.5 \ \mu S$ $g_{_{024}} = 0.03 \ \mu S$ $C_{n1} = 0.37 \text{ pF}$ $C_{c} = 1 \,\mathrm{pF}$ $g_{\rm m6} = 246 \ \mu S$ $g_{Lo6} = 20 \ \mu S$ $C_{1 n4} = 10.2 \text{ pF}$

CMOS密勒OTA: GBW

复旦大学

CMOS密勒OTA: 极点和零点

目录

• 单级OTA的设计

- CMOS密勒OTA的设计
- GBW和相位裕度的设计
- 其他指标: 输入范围、输出范围、SR...

CMOS密勒OTA: 设计规划

$$GBW = \frac{g_{m1}}{2\pi C_c}$$
$$f_{nd} \approx \frac{g_{m6}}{2\pi C_{Ln4}} \frac{1}{1 + \frac{C_{n1}}{C_c}}$$

GBW = 100 MHz $C_{L} = 2 \text{ pF}$

复旦大学 射频集成电路设计研究小组

选择 C_c=1 pF 有问题吗?

选择
$$C_{c} \approx 3C_{n1}$$
 得 $GBW = \frac{g_{m1}}{2\pi C_{c}}$ 和 $3GBW \approx \frac{g_{m6}}{2\pi C_{Ln4}} \frac{1}{1.3}$

GBW = 100 MHz $C_{L} = 2 \text{ pF}$ 选择 $C_{n1} < C_{c} < C_{L}$

选择 $C_{c} = 1 \text{ pF}$ 得 $g_{m1} = 0.63 \text{ mS}$ 和 $g_{m6} = 5.0 \text{ mS}$

CMOS密勒OTA设计:参变量C_c2

复旦大学 射频集成电路设计研究小组

-0521-

高速密勒OTA的优化设计 1

$$GBW = \frac{g_{m1}}{2\pi C_c} \qquad C_L = \alpha C_c \qquad \alpha \approx 2$$
$$C_L = \beta C_{n1} = \beta C_{GS6} \qquad \beta \approx 3$$
$$f_{nd} = \frac{g_{m6}}{2\pi C_L} \frac{1}{1 + C_{n1}/C_c} \qquad f_{nd} = \gamma GBW \qquad \gamma \approx 2$$
$$C_{GS} = kW \qquad k = 2 \text{ fF}/\mu \text{m}$$

$$GBW = \frac{f_{\text{nd}}}{\gamma} = \frac{g_{\text{m6}}}{2\pi C_{\text{L}}} \frac{1}{\gamma(1+1/\beta)} = \frac{f_{\text{T6}}}{\alpha\beta\gamma(1+1/\beta)}$$

$$C_{L} = \alpha C_{c} = \alpha \beta C_{n1} = \alpha \beta C_{GS6} = \alpha \beta k W_{6} \qquad \text{wr} C_{L} \uparrow M W_{6} \uparrow$$

复旦大学 射频集成电路设计研究小组

Ē

高速密勒OTA的优化设计 2

代入
$$f_{T6}$$
得 $f_{T6} = \frac{g_{m6}}{2\pi C_{GS6}}$
 $f_{T6} = \frac{1}{L_{6 \min}} \frac{13.5}{1 + 2.8L_{6 \min}/V_{GST6}}$ L的单位为µm
 f_{T} 的单位为GHz
 $GBW = \frac{f_{T6}}{\alpha\beta\gamma(1+1/\beta)}$
 $GBW \pi$ 是由 C_{L} 決定,只由 f_{T} 决定!
 f_{T} 由 $L(和 V_{GST})$ 决定!!!
当 V_{GST} =0.2 V, L_{min} <65 nm;

或 V_{GST}=0.5 V, L_{min}<0.18 µm 时,晶体管进入速度饱和区

复旦大学 射频集成电路设计研究小组

最大GBW与沟道长度L_{min}

高速密勒OTA的设计优化

- 选择αβγ
- 由给定的GBW得到最小的f_{T6}
- 由选定的(V_{GS6}-V_T)
 选择最大沟道长度L₆(最大化增益)
- 由CL计算W₆, 确定I_{DS6}
- 由 α 以及 C_L 计算 C_c
- 由C_c计算g_{m1}和I_{DS1}
- 由 g_{m1} 或 C_c 确定噪声

设计练习: GBW = 0.4 GHz & C_L = 5 pF

- 选择αβγ
- 由给定的GBW得到最小的f_{T6}
- 由选定的(V_{GS6}-V_T),
 选择最大沟道长度L₆(最大化增益)
- L₆取最小沟道长度L_{min}
- 由CL计算W₆,
 确定I_{DS6} (K_n = 70 μA/V²)
 确定C_{n1} (k = 2 fF/μm)
- 由 α 以及 C_L 计算 C_c
- 由C_c计算G_{m1}和I_{DS1}

2 3 2 f_{T6} = 6.4 GHz

 $L_{6} = 0.5 \ \mu m$

- $W_6 = 417 \ \mu m$ $I_{DS6} = 2.3 \ mA$
- $C_{p1} = 0.83 \text{ pF}$
- $C_{\rm c}=2.5~{\rm pF}$
- $I_{\rm DS1} = 0.63 \, {\rm mA}$

低速密勒OTA的优化设计 1

$$GBW = \frac{f_{T_6}}{\alpha\beta\gamma(1+1/\beta)}$$

$$\frac{f_{T}}{f_{TH}} = \sqrt{i}(1 - e^{-\sqrt{i}}) \approx \sqrt{i}(1 - 1 + \sqrt{i}) \approx i \quad \exists i \notin \forall i \forall i$$

$$f_{\rm TH} = \frac{3}{2} \frac{2\mu k T/q}{2\pi L^2}$$

GBW不是由C_L决定,只由f_T决定! f_T由L和i决定!!!

低速密勒OTA的优化设计 2

- 选择αβγ
- 由给定的GBW得到最小的f_{T6}
- 由给定的f_{TH6}
 选择最大沟道长度L₆(最大增益)
- 计算i₆
- 由CL计算W₆, 确定I_{DST6}和I_{DS6}
- 由α以及CL计算Cc
- 由Cc计算gm1和IDS1
- 由 g_{m1} 或 C_c 确定噪声

设计练习: GBW = 1 MHz & C_L=5 pF

- 选择αβγ
- 由GBW=1 MHz得到最小的f_{T6}
- 由给定的f_{TH6}
 选择最大沟道长度L₆(最大增益)
- 反型系数i
- 由CL计算W₆,
 确定I_{DST6}(K'_n = 70 µA/V²)
 确定I_{DS6}
 确定C_{n1}(k = 2 fF/µm)
- 由α以及CL计算Cc
- 由C_c计算*g*_{m1}和*I*_{DS1} ^{复旦大学}射频集成电路设计研究小组

232 $f_{T_6} = 16 \text{ MHz}$ $f_{\rm TH6} = 2 \, \rm GHz$ $L_{\rm e} = 0.5 \ \mu {\rm m}$ i = 0.008 $W_{e} = 417 \ \mu m$ $I_{DST6} = 0.33 \text{ mA}$ $I_{DS6} = 2.7 \ \mu A$ $C_{n1} = 0.83 \text{ pF}$ $C_{c} = 2.5 \text{ pF}$ $I_{DS1} = 1.6 \ \mu A$

目录

• 单级OTA的设计

- CMOS密勒OTA的设计
- GBW和相位裕度的设计

● 其他指标: 输入范围、输出范围、SR...

1. Introductory analysis

- 1.1 DC currents and voltages on all nodes
- 1.2 Small-signal parameters of all transistors

2. DC analysis

2.1 Common-mode input voltage range vs supply Voltage2.2 Output voltage range vs supply Voltage2.3 Maximum output current (sink and source)

3. AC and transient analysis

- 3.1 AC resistance and capacitance on all nodes
- 3.2 Gain versus frequency : GBW, ...
- 3.3 Gainbandwidth versus biasing current
- 3.4 Slew rate versus load capacitance
- 3.5 Output voltage range versus frequency
- 3.6 Settling time
- 3.7 Input impedance vs frequency (open & closed loop)
- 3.8 Output impedance vs frequency (open & closed loop)

- 4. Specifications related to offset and noise
- 4.1 Offset voltage versus common-mode input Voltage
- 4.2 CMRR versus frequency
- 4.3 Input bias current and offset
- 4.4 Equivalent input noise voltage versus frequency
- 4.5 Equivalent input noise current versus frequency
- 4.6 Noise optimization for capacitive/inductive sources
- 4.7 *PSRR* versus frequency

4.8 Distortion

- 5. Other second-order effects
- 5.1 Stability for inductive loads
- 5.2 Switching the biasing transistors
- 5.3 Switching or ramping the supply voltages
- 5.4 Different supply voltages, temperatures, ...

MCO: 其他规范

Common-mode input voltage range
Output voltage range
Slew Rate
Output impedance
Noise

CMOS密勒OTA

复旦大学 射频集成电路设计研究小组

CMOS密勒OTA: 共模输入电压范围

Ē

CMOS密勒OTA: 输出电压范围

复旦大学

版权©2014,版权保留,侵犯必究

CMOS密勒OTA: 压摆率

CMOS密勒OTA: 压摆率 2

复旦大学 射频集成电路设计研究小组

Ē

CMOS密勒OTA: 压摆率 3

GBW与SR的关系

Ref.: Solomon, JSSC Dec 74, 314-332

提高压摆率的方法

Ref.: Schmoock, JSSC Dec.75, 407-411

复旦大学 射频集成电路设计研究小组

唐长文

内部和外部压摆率

复旦大学 射频集成电路设计研究小组

唐长文

压摆率和建立时间

CMOS密勒OTA输出阻抗

复旦大学 射频集成电路设计研究小组

唐长文

CMOS密勒OTA版图照片

GBW = 1 MHz $C_{L} = 10 \text{ pF}$ $SR = 2.2 \text{ V/}\mu\text{s}$ $V_{DD} = 5 \text{ V}$ $I_{TOT} = 27 \text{ }\mu\text{A}$ 370 MHzpF/mA

密勒CMOS OTA: 练习

- 已知GBW=50 MHz和CL=2 pF:选用最小是IDS6!
- 工艺参数 $C_{L} = 2 \text{ pF}, L_{min} = 0.5 \mu m, K_{n}' = 50 \mu A/V^{2}, K_{p}' = 25 \mu A/V^{2}$ $C_{GS} = kW(=C_{ox}WL_{min})$ 和 $k = 2 \text{ fF}/\mu m$

$$V_{\rm GS} - V_{\rm T} = 0.2$$
 V

求
$$g_{m6}$$
、 I_{DS6} 、 W_{6} 、 $C_{n1} = C_{GS6}$ 、 C_{c} 、 g_{m1} 、 I_{DS1} 、 dv_{ineq}^2 和 v_{inRMS}