

集成电路器件和模型

- pn结模型
- BJT型晶体管模型
- MOS型晶体管模型
- MOS型与BJT型晶体管的比较

从双极型到MOS晶体管

Ref.: Toshiba & ISSCC2009

SIA线路图

Year	L _{min}	Bits/chip	Trans/chip	Clock	Wiring
	μm	Gb/chip	millions/chip	MHz	
1995	0.35	0.064	4	300	4-5
1998	0.25	0.256	7	450	5
2001	0.18	1	13	600	5-6
2004	0.13	4	25	800	6
2007	0.09	16	50	1000	6-7
2010	0.065	64	90	1100	7-8
2013	0.045				
2016	0.032				

Semiconductor Industry Association 复旦大学 射频集成电路设计研究小组

摩尔定律(The law of Moore)

使用不同特征尺寸的MPW价格

在深亚微米工艺下模拟设计的挑战

Ref.: SNUG2004, San Jose

ISSCC 2009论文分布情况

复旦大学 射频集成电路设计研究小组

混合信号 "不 **?**?

Ref.: SNUG2004, San Jose

号说明

- I_{OUT} DC or average value
- *I*_{out} amplitude of AC value
- *i*_{out} instantaneous value of AC component

目录

● pn结模型 □耗尽区宽度 □耗尽区电容 □击穿电压 □1-V关系曲线 □扩散电容 □小信号模型

复旦大学 射频集成电路设计研究小组

pn结的剖面图和符号

A cross section of a pn junction.

正偏pn结示意图: 突变结

由电中性原则知,耗尽区内: $W_p N_A = W_n N_D$ 由泊松方程,当 $-W_p < x < 0$, $\frac{d^2 V(x)}{dx^2} = -\frac{\rho}{\epsilon_{si}} = \frac{q N_A}{\epsilon_{si}}$ 其中 $\epsilon_{si} = K_{si} \epsilon_0$,积分得: $E(x) = -\frac{d V(x)}{dx} = -\left(\frac{q N_A}{\epsilon_{si}} x + C_1\right)$

复旦大学 射频集成电路设计研究小组

电场强度

第一个边界条件
$$E(-W_p)=0$$
,
 $E(x) = -\frac{qN_A}{\varepsilon_{si}}(x+W_p) = -\frac{dV(x)}{dx}$
 $V(x) = \frac{qN_A}{\varepsilon_{si}}\left(\frac{x^2}{2}+W_px\right)+C_2$

复旦大学 射频集成电路设计研究小组

第二个边界条件 V(0)=0, V(x) =
$$\frac{qN_A}{\varepsilon_{si}} \left(\frac{x^2}{2} + W_p x \right)$$

令 V(-W_p)=-V_1, V_1 = $\frac{qN_A}{\varepsilon_{si}} \frac{W_p^2}{2}$
同理, 从x=0到x=W_n的电压为V_2, V_2 = $\frac{qN_D}{\varepsilon_{si}} \frac{W_n^2}{2}$

复旦大学 射频集成电路设计研究小组

毛尽区宽度

其中,p型区和n型区的宽度分别为:

例题1:

一个硅材料pn结的掺杂溶度 N_{A} =10¹⁶原子/cm³和 N_{D} =10¹⁷ 原子/cm³,在10 V反偏电压下,计算结的内建势和耗尽区宽度。

解: 在300K时, 内建势:

$$\Phi_0 = V_T \ln \frac{N_A N_D}{n_i^2} = 0.026 \ln \frac{10^{16} \times 10^{17}}{2.25 \times 10^{20}} = 757 \text{ mV}$$

p型区的耗尽区宽度
$$W_{p} = \left[\frac{2\varepsilon_{si}(\Phi_{0} - V_{D})}{qN_{A}\left(1 + \frac{N_{A}}{N_{D}}\right)}\right]^{1/2} = \left[\frac{2 \times 1.04 \times 10^{-12} \times 10.757}{1.6 \times 10^{-19} \times 10^{16} \times 1.1}\right]^{1/2} = 1.1 \times 10^{-4} \text{ cm}$$
$$= 1.1 \,\mu\text{m}$$

n型区的耗尽区宽度 $W_n = W_p(N_A/N_D) = 0.11 \, \mu m$

复旦大学 射频集成电路设计研究小组

耗尽区内的固定电荷

$$Q_{j} = Q^{+} = Q^{-} = qN_{D}W_{n} = \left[\frac{2qN_{D}\varepsilon_{si}(\boldsymbol{\Phi}_{0} - V_{D})}{\left(1 + \frac{N_{D}}{N_{A}}\right)}\right]^{1/2}$$

当 $N_A >> N_D$ 时 $Q_j \approx [2q\varepsilon_{si}(\Phi_0 - V_D)N_D]^{1/2}$

耗尽电容

复旦大学 射频集成电路设计研究小组

例题2:

一个硅材料pn结的掺杂溶度N_A=10¹⁶原子/cm³和 N_D=10¹⁷
 原子/cm³, 计算面积10 µm × 10 µm的pn结在0 V偏压下的
 耗尽电容? 在3 V反偏电压下, pn结耗尽电容是多少?
 解: 0 V偏压下, 面耗尽电容为,

$$C_{j0} = \sqrt{\frac{q\varepsilon_{si}}{2\Phi_0} \frac{N_A N_D}{N_A + N_D}} = \sqrt{\frac{1.6 \times 10^{-19} \times 1.04 \times 10^{-12} \times 10^{17}}{2 \times 0.757 \times 11}}$$

 $= 3.16 \times 10^{-8}$ F/cm² = 0.316 fF/µm²

面积10 µm×10 µm的pn结的耗尽电容为31.6 fF 3 V反偏电压下,耗尽电容为,

$$C_{\mathrm{T,j}} = \frac{C_{\mathrm{T,j0}}}{\sqrt{1 - \frac{V_{\mathrm{D}}}{\varphi_{\mathrm{0}}}}} = \frac{3.16 \text{ fF}}{\sqrt{1 - \frac{-3}{0.757}}} = 1.42 \text{ fF}$$

复旦大学 射频集成电路设计研究小组

练习1: 缓变pn结

缓变pn结的掺杂溶度梯度为a,请推导缓变pn结的空间电荷和耗尽电容。

Space charge density in a linearly graded pn junclian

击穿电压

耗尽区内的最大电场:
$$E_{max} = -\frac{qN_A}{\epsilon_{si}}W_p$$

当忽略 ϕ_0 , $|E_{max}| \approx \left[\frac{2qN_AN_DV_D}{\epsilon_{si}(N_A + N_D)}\right]^{1/2}$

击穿时的临界电场为 E_{crit} ,则击穿电压为:

$$BV = rac{\varepsilon_{si}(N_A + N_D)}{2qN_AN_D}E_{crit}^2$$

当 $N_A >> N_D$ 时,
 $BV \approx rac{\varepsilon_{si}E_{crit}^2}{2qN_D}$

复旦大学 射频集成电路设计研究小组

击穿电压反偏电流

Typical I-V characteristic of a junction diode showing avalanche breakdown

例题2:

一个硅材料pn结的掺杂溶度N_A=10¹⁶原子/cm³和 N_D=10¹⁷ 原子/cm³,假设临界电场E_{crit}=3×10⁵ V/cm,计算击穿电 压。

解: 击穿电压:

$$BV = \frac{\varepsilon_{si}(N_A + N_D)}{2qN_AN_D}E_{crit}^2 = \frac{1.04 \times 10^{-12} \times 11}{2 \times 1.6 \times 10^{-19} \times 10^{17}} \times 9 \times 10^{10}$$
$$= 32 \text{ V}$$

pn结中少数载流子分布图

Impurity concentration profile for diffused pn junction

p型和n型半导体中的少子浓度分别为:

$$n_{p}(0) = n_{p0} e^{\frac{V_{D}}{V_{T}}} \qquad p_{n}(0) = p_{n0} e^{\frac{V_{D}}{V_{T}}}$$

非平衡少子的扩散

非平衡少子与扩散的距离之间是指数关系: n型区的空穴:

$$p'_{n}(x) = p'_{n}(0)e^{-\frac{x}{L_{p}}} = [p_{n}(0) - p_{n0}]e^{-\frac{x}{L_{p}}} = p_{n0}(e^{\frac{V_{D}}{V_{T}}} - 1)e^{-\frac{x}{L_{p}}}$$

p型区的电子: $n_{p}(x) = n_{p}(0)e^{-\frac{x}{L_{n}}} = [n_{p}(0) - n_{p0}]e^{-\frac{x}{L_{n}}} = n_{p0}(e^{\frac{V_{0}}{V_{1}}} - 1)e^{-\frac{x}{L_{n}}}$ 其中 L_{p} 和 L_{n} 分别是n型和p型中空穴和电子的扩散长度。

$$p_n(x) = p_n(x) - p_{n0}$$
 $n_p(x) = n_p(x) - n_{p0}$

非平衡少子的扩散电流密度

n型区的空穴: $J_{p}(0) = -qD_{p} \frac{dp'_{n}(x)}{dx} \Big|_{x=0} = \frac{qD_{p}p_{n0}}{L_{p}} (e^{\frac{V_{D}}{V_{T}}} - 1)$

p型区的电子:

$$J_{n}(0) = -qD_{n} \frac{dn'_{p}(x)}{dx} \bigg|_{x=0} = \frac{qD_{n}n_{p0}}{L_{n}} (e^{\frac{V_{D}}{V_{T}}} - 1)$$

其中, $D_n n D_p \beta$ 别是电子和空穴扩散系数 pn结的总电流密度 $J(0) = J_p(0) + J_n(0) = q \left(\frac{D_p p_{n0}}{L_p} + \frac{D_n n_{p0}}{L_n} \right) (e^{\frac{V_0}{V_T}} - 1)$

复旦大学 射频集成电路设计研究小组

I-V关系曲线

横切面积为A的pn结电流:

$$I_{\rm D} = AJ_{\rm n}(0) = qA\left(\frac{D_{\rm p}p_{\rm n0}}{L_{\rm p}} + \frac{D_{\rm n}n_{\rm p0}}{L_{\rm n}}\right) (e^{\frac{V_{\rm D}}{V_{\rm T}}} - 1)$$
$$= qA\left(\frac{D_{\rm p}n_{\rm i}^{2}}{L_{\rm p}N_{\rm D}} + \frac{D_{\rm n}n_{\rm i}^{2}}{L_{\rm n}N_{\rm A}}\right) (e^{\frac{V_{\rm D}}{V_{\rm T}}} - 1) = I_{\rm s}(e^{\frac{V_{\rm D}}{V_{\rm T}}} - 1)$$

其中/s为pn结反向饱和电流,为常数。

非平衡少数载流子电荷

n型区的空穴:

$$Q_{p} = qA \int_{0}^{\infty} p'_{n}(x) dx = qA \int_{0}^{\infty} [p_{n}(0) - p_{n0}] e^{-\frac{x}{L_{p}}} dx$$

 $= qAL_{p}[p_{n}(0) - p_{n0}] = \frac{qAL_{p}n_{i}^{2}}{N_{D}}(e^{\frac{V_{D}}{V_{T}}} - 1)$
p型区的电子:
 $Q_{n} = qA \int_{0}^{\infty} n'_{p}(x) dx = qA \int_{0}^{\infty} [n_{p}(0) - n_{p0}] e^{-\frac{x}{L_{n}}} dx$
 $= qAL_{n}[n_{p}(0) - n_{p0}] = \frac{qAL_{n}n_{i}^{2}}{N_{A}}(e^{\frac{V_{D}}{V_{T}}} - 1)$

复旦大学 射频集成电路设计研究小组

广散电容

$$C_{d} = \frac{dQ_{d}}{dV_{D}} = \frac{d(Q_{n} + Q_{p})}{dV_{D}} = \frac{qAn_{i}^{2}}{V_{T}} e^{\frac{V_{D}}{V_{T}}} (\frac{L_{n}}{N_{A}} + \frac{L_{p}}{N_{D}})$$
$$\approx \frac{I_{D}}{V_{T}} \frac{L_{n}^{2}L_{p} + L_{p}^{2}L_{n}}{N_{p}} \frac{N_{A}}{N_{D}}}{L_{p}D_{n} + L_{n}D_{p}} \frac{N_{A}}{N_{D}}}$$

重掺杂一侧少子的电荷存储可以忽略,假设n区重掺杂, N_D>>N_A,扩散电荷Q_d≈Q_n:其中T_T为二极管的渡越时间

$$C_{\rm d} \approx \frac{L_{\rm n}^2}{D_{\rm n}} \frac{I_{\rm D}}{V_{\rm T}} = T_{\rm T} \frac{I_{\rm D}}{V_{\rm T}}$$

pn结的小信号模型

The small-singal model for a junction. (a) forward bias. (b) reverse bias.

正偏输出阻抗rd

$$\frac{1}{r_{\rm d}} = \frac{{\rm d}I_{\rm D}}{{\rm d}V_{\rm D}} = I_{\rm s}\frac{{\rm e}^{V_{\rm D}/V_{\rm T}}}{V_{\rm T}} \approx \frac{I_{\rm D}}{V_{\rm T}}$$

$$C_{\rm d} = \frac{T_{\rm T}}{r_{\rm d}}$$

复旦大学 射频集成电路设计研究小组

例题3:

二极管的渡越时间为100 pS,正向偏置电流为1 mA,问 其小信号输出阻抗和扩散电容分别是多少?

解:

小信号是输出阻抗:

$$r_{\rm d} = \frac{V_{\rm T}}{I_{\rm D}} = \frac{26 \text{ mV}}{1 \text{ mA}} = 26 \Omega$$

扩散电容:

$$C_{\rm d} = \frac{r_{\rm T}}{r_{\rm d}} = \frac{100 \text{ pS}}{26 \Omega} = 3.8 \text{ pF}$$

目录

● BJT型晶体管模型 □大信号工作原理 □正向工作区 □厄利效应 □饱和区和反向工作区 □击穿电压 □电流增益 β_{F} 与工作条件的关系 □小信号模型 □低频小信号模型 □高频小信号模型

□模拟评价指标

□器件模型概要

复旦大学 射频集成电路设计研究小组

BJT型晶体管的剖面图和符号

A cross section of an npn bipolar-junction transistor.

npn型BJT晶体管的电流

Various components of the currents of an npn transistor.

发射结正偏, 集电结反偏
少数载流子溶度分布图

Carrier concentrations along the cross section

基区中耗尽区边缘的少数载流子浓度:

$$n_{\rm p}(0) = n_{\rm p0} \mathrm{e}^{\frac{V_{\rm BE}}{V_{\rm T}}} \qquad n_{\rm p}(W_{\rm B}) = n_{\rm p0} \mathrm{e}^{\frac{V_{\rm BC}}{V_{\rm T}}} \approx 0$$

集电极电流

基区中电子引起的扩散电流密度:

$$J_{\rm n} = qD_{\rm n} \frac{\mathrm{d}n_{\rm p}(x)}{\mathrm{d}x} = -qD_{\rm n} \frac{n_{\rm p}(0)}{W_{\rm B}}$$

集电极电流:

$$I_{C} = qAD_{n} \frac{n_{p}(0)}{W_{B}} = \frac{qAD_{n}n_{p0}}{W_{B}} e^{\frac{V_{BE}}{V_{T}}} = I_{S}e^{\frac{V_{BE}}{V_{T}}}$$

其中A为发射区面积, I_{S} 为基极-发射极结反向饱和电流

$$\begin{split} I_{\rm S} &= \frac{{\rm q}AD_{\rm n}n_{\rm p0}}{W_{\rm B}} = \frac{{\rm q}AD_{\rm n}n_{\rm i}^2}{W_{\rm B}N_{\rm B}} = \frac{{\rm q}A\overline{D_{\rm n}}n_{\rm i}^2}{Q_{\rm B}} \qquad n_{\rm p0} = \frac{n_{\rm i}^2}{N_{\rm B}}\\ Q_{\rm B}(=W_{\rm B}N_{\rm B}) \\ \mathbb{Q}_{\rm B}(=W_{\rm B}$$

复旦大学 射频集成电路设计研究小组

唐长文

基极电流之一:复合电流

基区中少数载流子电荷为:

$$Q_{e} = \frac{1}{2} n_{p}(0) W_{B} q A$$

基极复合电流为:

$$I_{B1} = \frac{Q_{e}}{T_{b}} = \frac{1}{2} \frac{n_{p}(0)W_{B}qA}{T_{b}} = \frac{1}{2} \frac{n_{p0}W_{B}qA}{T_{b}} e^{\frac{V_{BE}}{V_{T}}}$$

其中Tb是基区中少数载流子的存活时间。

基极电流之二:发射区的空穴电流

由基区注入发射区的空穴所引起扩散电流的:

$$I_{B2} = \frac{qAD_{p}}{L_{p}} p_{nE}(0) = \frac{qAD_{p}}{L_{p}} p_{nE0} e^{\frac{V_{BE}}{V_{T}}} = \frac{qAD_{p}}{L_{p}} \frac{n_{i}^{2}}{N_{E}} e^{\frac{V_{BE}}{V_{T}}}$$

其中L_p是空穴在发射区的扩散长度, D_p是空穴的扩散 系数。P_{nE}(0)是发射区耗尽层边缘的空穴浓度。

基极总电流:

$$I_{\rm B} = I_{\rm B1} + I_{\rm B2} = \left(\frac{1}{2}\frac{n_{\rm p0}W_{\rm B}qA}{\tau_{\rm b}} + \frac{qAD_{\rm p}}{L_{\rm p}}\frac{n_{\rm i}^2}{N_{\rm E}}\right)e^{\frac{V_{\rm BE}}{V_{\rm T}}}$$

共射极电流增益

正向放大区的电流增益:

典型值为50~500

$$\beta_{\rm F} = \frac{I_{\rm C}}{I_{\rm B}} = \frac{\frac{qAD_{\rm n}N_{\rm p0}}{W_{\rm B}}}{\frac{1}{2}\frac{n_{\rm p0}W_{\rm B}qA}{T_{\rm b}} + \frac{qAD_{\rm p}}{L_{\rm p}}\frac{n_{\rm i}^2}{N_{\rm E}}} = \frac{1}{\frac{W_{\rm B}^2}{2\tau_{\rm b}D_{\rm n}} + \frac{D_{\rm p}}{D_{\rm p}}\frac{W_{\rm B}}{L_{\rm p}}\frac{N_{\rm B}}{N_{\rm E}}}$$

发射极与基极和集电极电流关系:

$$I_{\rm E} = -(I_{\rm C} + I_{\rm B}) = -\left(I_{\rm C} + \frac{I_{\rm C}}{\beta_{\rm F}}\right) = -\frac{I_{\rm C}}{\alpha_{\rm F}}$$

大信号机

Large-signal models of npn transistors for use in bias calculations. (a) Circuit incorporating an input diode.

(b) Simplified circuit with an input voltage source.

pnp型BJT晶体管的大信号模型

(a) pnp Bipolar transistor sign convention. (b),(c) Large-signal models of pnp transistors corresponding to npn transistors

Effect of increases in V_{CE} on the collector depletion region and base width of a bipolar transistor.

集电极电流:

$$I_{\rm C} = \frac{qA\overline{D_{\rm n}}n_{\rm i}^2}{Q_{\rm B}}e^{\frac{V_{\rm BE}}{V_{\rm T}}}$$

 $\frac{\partial I_{\rm C}}{\partial V_{\rm CF}} = -\frac{qA\overline{D_{\rm n}}n_{\rm i}^2}{Q_{\rm B}^2}e^{\frac{V_{\rm BE}}{V_{\rm T}}}\frac{dQ_{\rm B}}{dV_{\rm CF}} = -\frac{I_{\rm C}}{Q_{\rm B}}\frac{dQ_{\rm B}}{dV_{\rm CF}}$ 对于一个均匀掺杂基区晶体管Q_B=W_BN_B,且V_{BF}固定时 $\frac{\partial I_{\rm C}}{\partial V_{\rm CE}} = -\frac{I_{\rm C}}{W_{\rm B}} \frac{\mathrm{d} W_{\rm B}}{\mathrm{d} V_{\rm CE}}$ $\left|\frac{\mathrm{d}W_{\mathrm{B}}}{\mathrm{d}V_{\mathrm{CE}}}\right| = \left|\frac{\mathrm{d}W_{\mathrm{B}}}{\mathrm{d}V_{\mathrm{CB}}}\right| = \left|\frac{\varepsilon_{\mathrm{si}}}{2qN_{\mathrm{B}}\left(1 + \frac{N_{\mathrm{B}}}{N_{\mathrm{C}}}\right)(\varphi_{0} + V_{\mathrm{CB}})\right|$

厄利电压

和区

Carrier concentrations in a saturated npn transistor. (Not to scale.)

发射结正偏,集电结正偏

反向放大区

Carrier concentrations in a reversed npn transistor. (Not to scale.)

发射结反偏,集电结正偏

Carrier concentrations in a cutoff npn transistor. (Not to scale.)

发射结反偏,集电结反偏

典型I_C-V_{CE}特性曲线图

(a) Test circuit. (b) Typical I_{C} - V_{CE} characteristics for an npn bipolar transistor. Note the different scales for positive and negative currents and voltages.

饱和区大信号模型

Large-signal models for bipolar transistors in the saturation region.

Ebers-Moll模型: (1)

基区中集电极耗尽区边缘的少数载流子浓度: $n_{p}(W_{B}) = n_{p0} e^{\frac{V_{BC}}{V_{T}}}$ 基极-集电极结正偏电流: $I_{CR} = -I_{CS}(e^{\frac{V_{BC}}{V_{T}}} - 1)$ 基极-发射极结正偏电流: $I_{EF} = -I_{ES}(e^{\frac{V_{BC}}{V_{T}}} - 1)$

Ebers-Moll模型:正向/反向放大共基极电流增益 α_{F}, α_{R}

$$\begin{cases} I_{\rm C} = \alpha_{\rm F} I_{\rm ES} (e^{\frac{V_{\rm BE}}{V_{\rm T}}} - 1) - I_{\rm CS} (e^{\frac{V_{\rm BC}}{V_{\rm T}}} - 1) \\ I_{\rm E} = -I_{\rm ES} (e^{\frac{V_{\rm BE}}{V_{\rm T}}} - 1) + \alpha_{\rm R} I_{\rm CS} (e^{\frac{V_{\rm BC}}{V_{\rm T}}} - 1) \end{cases}$$

Ebers-Moll模型: (2)

在正向放大区, V_{BE}为正, V_{BC}为负,

$$\begin{cases}
I_{C} = \alpha_{F}I_{ES}(e^{\frac{V_{BE}}{V_{T}}} - 1) + I_{CS} \\
I_{E} = -I_{ES}(e^{\frac{V_{BE}}{V_{T}}} - 1) - \alpha_{R}I_{CS} \\
\text{正向/反向放大区共射极电流增益: } \beta_{F} = \frac{\alpha_{F}}{1 - \alpha_{F}} \beta_{R} = \frac{\alpha_{R}}{1 - \alpha_{R}} \\$$
集电极电流: $I_{C} = \alpha_{F}I_{ES}(e^{\frac{V_{BE}}{V_{T}}} - 1) + I_{CS} = \alpha_{F}(-I_{E} - \alpha_{R}I_{CS}) + I_{CS} \\$
基极电流: $= -\alpha_{F}I_{E} + I_{CS}(1 - \alpha_{R}\alpha_{F}) = -\alpha_{F}I_{E} + I_{CO} \\$
基极电流: $I_{B} = -(I_{C} + I_{E}) = \frac{1 - \alpha_{F}}{\alpha_{F}}I_{C} - \frac{I_{CO}}{\alpha_{F}} = \frac{I_{C}}{\beta_{F}} - \frac{I_{CO}}{\alpha_{F}}$

共基击穿电压

复旦大学 射频集成电路设计研究小组

唐长文

共射与共基击穿电压的关系

$$I_{\rm B} = -(I_{\rm C} + I_{\rm E}) \qquad I_{\rm C} = \frac{M\alpha_{\rm F}}{1 - M\alpha_{\rm F}} I_{\rm B}$$

令*M*α_F=1, 且*V*_{CB}≈*V*_{CE},

$$\frac{BV_{\text{CEO}}}{BV_{\text{CBO}}} = \sqrt[n]{1 - \alpha_{\text{F}}} = \sqrt[n]{\frac{\alpha_{\text{F}}}{\beta_{\text{F}}}} \approx \frac{1}{\sqrt[n]{\beta_{\text{F}}}}$$

$$BV_{CEO} \approx \frac{BV_{CBO}}{\sqrt[n]{\beta_{F}}}$$

β_F和*n*典型为100和4

1 1 ---

例题4:

BJT晶体管的集电极掺杂溶度远小于基极溶度,当集电极 溶度为2×10¹⁵原子/cm³,临界电场E_{crit}=3×10⁵ V/cm, β=100和*n*=4,计算击穿电压BV_{CEO}。

解:因为N_B>>N_C,

$$BV_{CBO} = \frac{\varepsilon_{si}E_{crit}^2}{2qN_C} = \frac{1.04 \times 10^{-12} \times 9 \times 10^{10}}{2 \times 1.6 \times 10^{-19} \times 2 \times 10^{15}} = 146 \text{ V}$$

$$BV_{\rm CEO} \approx \frac{BV_{\rm CBO}}{\sqrt[n]{\beta_{\rm F}}} = \frac{146}{\sqrt[4]{100}} = 46 \text{ V}$$

电流增益 β_F 与工作条件的关系

In*I*-V_{BE}关系

复旦大学 射频集成电路设计研究小组

-0159-

唐长文

小信号模

Effect of a small-signal input voltage applied to a bipolar transistor. (a) Circuit schematic. (b) Corresponding changes in carrier concentrations in the base when the device is in the forward-active region.

低频小信号模型

复旦大学 射频集成电路设计研究小组

唐长文

低频小信号模型: (2)

基区中少数载流子存储电荷:

 $Q_{\rm e} = \frac{1}{2} n_{\rm p}(0) W_{\rm B} q A = \frac{q A n_{\rm i}^2 W_{\rm B}}{2 N_{\rm L}} e^{\frac{v_{\rm BE}}{V_{\rm T}}} \approx \frac{W_{\rm B}^2}{2 D} I_{\rm C} = T_{\rm b} I_{\rm C}$ $T_{\rm b} = \frac{W_{\rm B}^2}{2D}$ 其中Th是基区渡越时间: 基区扩散电容: $C_{d} \approx \frac{dQ_{e}}{dV_{-}} = \frac{d(T_{b}I_{c})}{dV_{-}} \approx T_{b}\frac{I_{c}}{V_{+}} = g_{m}T_{b}$ 输出阻抗: $r_{o} = \frac{\partial V_{CE}}{\partial I_{C}} = \left(\frac{\partial I_{C}}{\partial V_{CE}}\right)^{-1} = \left(\frac{\partial (I_{CS}e^{V_{BE}/V_{T}}(1+\frac{V_{CE}}{V_{A}}))}{\partial V_{CE}}\right)^{-1} \approx \frac{V_{A}}{I_{C}}$

BJT晶体管的寄生参数

Integrated-circuit npn bipolar transistor structure showing parasitic elements. (Not to scale.)

高频小信号模型: (1)

Complete bipolar transistor small-signal equivalent circuit.

集基电阻 r_{μ} :假设 V_{BE} 恒定,基极电流 $I_{B}=10I_{B1}$ $r_{\mu} = \frac{\partial V_{CE}}{\partial I_{\mu}} = \frac{\partial V_{CE}}{\partial I_{\mu}} \frac{\partial I_{C}}{\partial I_{\mu}} = 10r_{o}\frac{\partial I_{C}}{\partial I_{\mu}} = 10\beta_{o}r_{o}$

高频小信号模型: (2)

正向偏置的基极-发射极结电容: 其中C_i是基极-发射极结的耗尽电容

 $C_{\pi} = C_{i} + C_{d}$

基极-集电极结的耗尽电容:缓变结集电极-衬底结的耗尽电容:

寄生电阻: r_b , $r_e \pi r_c$

例题5:

计算双极型晶体管小信号参数。假设
$$I_{C}$$
=1 mA, V_{CB} =3 V, V_{CS} =5 V, C_{jbe0} =10 fF, n_{be} =0.5, Φ_{0BE} =0.9 V, C_{jbc0} =10 fF, n_{bc} =0.3, Φ_{0BC} =0.5 V, C_{jsc0} =20 fF, n_{sc} =0.3, Φ_{0SC} =0.65 V, β_{0} =100, τ_{b} =10 ps, V_{A} =20 V, r_{b} =300 Ω , r_{c} =50 Ω , r_{e} =5 Ω , r_{μ} =10 $\beta_{0}r_{0}$.

解:

$$g_{\rm m} = \frac{I_{\rm C}}{V_{\rm T}} = \frac{1 \,{\rm mA}}{26 \,{\rm mV}} = 38 \,{\rm mA/V} \qquad r_{\rm \pi} = \frac{\beta}{g_{\rm m}} = \frac{100}{38 \,{\rm mA/V}} = 2.6 \,{\rm k\Omega}$$

$$r_{\rm o} = \frac{V_{\rm A}}{I_{\rm C}} = \frac{20 \,{\rm V}}{1 \,{\rm mA}} = 20 \,{\rm k\Omega} \qquad r_{\mu} = 10\beta_0 r_{\rm o} = 10 \times 100 \times 20 \,{\rm k\Omega} = 20 \,{\rm M\Omega}$$

$$C_{\rm d} = g_{\rm m} r_{\rm b} = 38 \,{\rm mA/V} \times 10 \,{\rm ps} = 0.38 \,{\rm pF}$$

基极-发射极结正偏,耗尽电容很难计算,估算 $C_{j}=20~\mathrm{fF}_{\circ}$ 。

 $C_{\pi} = C_{\rm j} + C_{\rm d} = 0.4 \text{ pF}$ $C_{\mu} = 5.6 \text{ fF}$ $C_{\rm cs} = 10.5 \text{ fF}$

模拟评价指标

固有增益:

$$A_{\mathrm{I}} = g_{\mathrm{m}}r_{\mathrm{o}} = rac{I_{\mathrm{C}}}{V_{\mathrm{T}}}rac{V_{\mathrm{A}}}{I_{\mathrm{C}}} = rac{V_{\mathrm{A}}}{V_{\mathrm{T}}}$$

跨导电流比:

$$\frac{g_{\rm m}}{I_{\rm C}} = \frac{1}{V_{\rm T}}$$

特征频率:

$$f_{\rm T} = \frac{1}{2\pi} \frac{g_{\rm m}}{C_{\rm m} + C_{\rm \mu}}$$

高频小信号电流增益

(a)Schematic of ac circuit for measurement of f_T . (b) Small-signal equivalent circuit for the calculation of f_T .

忽略
$$r_{o}$$
、 C_{cs} 、 r_{c} , 忽略通过 C_{μ} 的电流,
 $V_{be} \approx \frac{r_{\pi}}{1+r_{\pi}(C_{\pi}+C_{\mu})s} i_{i}$ $i_{o} \approx g_{m}V_{be} = i_{i}\frac{g_{m}r_{\pi}}{1+r_{\pi}(C_{\pi}+C_{\mu})s}$
 $\beta(j2\pi f) = \frac{i_{o}}{i_{i}} = \frac{\beta_{0}}{1+\beta_{0}}\frac{\beta_{0}}{C_{\pi}+C_{\mu}}j2\pi f} \approx \frac{g_{m}}{j2\pi f(C_{\pi}+C_{\mu})}$
 $g_{\Xi \pm \pm}$ 射频集成电路设计研究小组 g_{m} -0168- $B \in \Sigma$

手征频率

复旦大学 射频集成电路设计研究小组

唐长文

f_T与I_{CE}的关系:理论上

复旦大学 射频集成电路设计研究小组

-0170-

唐长文

f₁与l_{CE}的关系:实际上

A sketch of transistor $f_{\rm T}$ versus collector current, $I_{\rm C}$.

例题6:

某双极型晶体管在 I_{C1} =0.25 mA和 I_{C2} =1 mA两种工作情况下,在1 GHz频率点,输出短路的共射电流增益分别为8和9,电容 C_{μ} 的测试值为10 fF,假设 C_{j} 和 T_{b} 是常数,计算它们的值。

解: 在*I*_{C1}=0.25 mA和*I*_{C2}=1 mA两种工作情况下,特征频率 分别为*f*_{T1}=8 GHz, *f*_{T2}=9 GHz。

$$\begin{cases} \frac{1}{2\pi f_{T1}} = \tau_{b} + (C_{j} + C_{\mu}) \frac{kT/q}{I_{C1}} & \begin{cases} C_{j} = 18.2 \text{ fF} \\ \frac{1}{2\pi f_{T2}} = \tau_{b} + (C_{j} + C_{\mu}) \frac{kT/q}{I_{C2}} & \\ \end{cases} \end{cases}$$
器件模型概要: 放大区直流参数

器件模型概要: 放大区小信号参数

复旦大学 射频集成电路设计研究小组

唐长文

"单页" BJT型晶体管模型

$$I_{\rm C} = I_{\rm S} e^{\frac{V_{\rm BE}}{V_{\rm T}}} \left(1 + \frac{V_{\rm CE}}{V_{\rm A}} \right)$$
$$g_{\rm m} = \frac{I_{\rm C}}{V_{\rm T}}$$
$$r_{\rm o} = \frac{V_{\rm A}}{I_{\rm C}}$$
$$f_{\rm T} = \frac{1}{2\pi} \frac{1}{r_{\rm b}} + \frac{C_{\rm j} + C_{\mu}}{g_{\rm m}}$$

*I*_s ≈10⁻¹⁵ A 当*k*=300 K时,*V*_T=k*T*/q = 26 mV

 $V_{\rm Anpn} \approx 20 \ {\rm V}$ $V_{\rm Apnp} \approx 10 \ {
m V}$

或 ≈ $\frac{V_{\rm scl}}{2\pi W_{\rm P}}$

● MOS型晶体管模型 □MOS管 □MOS电容 □阈值电压 □大信号工作原理 □线性区 □强反型区 □弱反型区 □速度饱和区 □小信号模型 □低频小信号模型

目录

□高频小信号模型

□模拟评价指标

□器件模型概要

□MOS型与BJT型晶体管的比较

NMOS型晶体管的剖面图和符号

A cross section of a typical n-channel transistor.

复旦大学 射频集成电路设计研究小组

-0178-

MOS型晶体管的尺寸参数

MOS型晶体管的版图

MIS结构: 电荷密度

耗尽层中的电荷体密度: $\rho = -qN_B$ 沟道中电荷面密度: Q_C

沟道和栅氧之间的表面缺陷 造成的电荷面密度: Q_{SS}

栅上电荷面密度: QG

电荷守恒: (面密度) -q $N_A t_d + Q_C + Q_{ss} + Q_G = 0$

MIS结构: 电场和静电势

复旦大学 射频集成电路设计研究小组

唐长文

MIS结构:静电势

$$E(x) = -\frac{qN_{B}}{\varepsilon_{si}}(x + t_{d} + t_{c}) = -\frac{dV(x)}{dx}$$
$$V(x) = \frac{qN_{B}}{\varepsilon_{si}}\left(\frac{x^{2}}{2} + (t_{d} + t_{c})x\right) + C_{2}$$

耗尽层静电势差: $V(-t_{c}) - V(-t_{d} - t_{c}) = \frac{qN_{B}}{\varepsilon_{si}} \frac{t_{d}^{2}}{2} = |\Phi_{s} - \Phi_{F}| + V_{CB}$ 其中 Φ_{s} 是反型层的表面势。 当 Φ_{s} =- Φ_{F} 时, 衬底反型形成沟道。耗尽层的宽度: $I_{d} = \left[\frac{2\varepsilon_{si}(|2\Phi_{F}| + V_{CB})}{qN_{B}}\right]^{1/2}$

耗尽电容和栅氧电容

耗尽层中的电荷面密度: $Q_i = qN_Bt_d$

耗尽电容:
$$C_{bc} = WL \frac{dQ_j}{dV_{CB}} = WL \frac{\varepsilon_{si}}{t_d} = WLC_j$$

其中Ci为单位面积的耗尽电容:

栅氧电容: $C_{gc} = WLC_{ox}$

其中Cox为单位面积的栅氧电容:

MIS结构: 电容

栅上的电荷面密度

耗尽区中的固定电荷面密度:

$$Q_{j} = -qN_{B}t_{d} = -\sqrt{2qN_{B}\varepsilon_{si}}(|2\Phi_{F}|+V_{CB})$$

如果V_C浮空或者耗尽层偏压V_{CB}=0,耗尽区中的固定 电荷面密度:

$$Q_{j0} = -qN_{B}t_{d} = -\sqrt{2qN_{B}\varepsilon_{si}}(|2\Phi_{F}|)$$

当反型沟道层刚形成时,根据电荷守恒,栅上的电荷面密度:

$$Q_{\rm G}^{}=-Q_{\rm j}^{}-Q_{\rm SS}^{}$$

$$\begin{split} & V_{GB} \textit{的阈值电压} \\ & \mathcal{V}_{TH,GB} = \mathcal{V}_{CB} + \left| 2\Phi_{F} \right| + \mathcal{P}_{MS} + \frac{Q_{G}}{C_{ox}} = \mathcal{V}_{CB} + \left| 2\Phi_{F} \right| + \mathcal{P}_{MS} + \frac{-Q_{j} - Q_{SS}}{C_{ox}} \\ & = \mathcal{V}_{CB} + \left| 2\Phi_{F} \right| + \mathcal{P}_{MS} - \frac{Q_{j0}}{C_{ox}} - \frac{Q_{SS}}{C_{ox}} - \frac{Q_{j} - Q_{j0}}{C_{ox}} \\ & = \mathcal{V}_{CB} + \mathcal{V}_{TH0} + \gamma(\sqrt{|2\Phi_{F}| + \mathcal{V}_{CB}} - \sqrt{|2\Phi_{F}|}) \\ & \mathcal{V}_{TH0} = \left| 2\Phi_{F} \right| + \mathcal{P}_{MS} - \frac{Q_{j0}}{C_{ox}} - \frac{Q_{SS}}{C_{ox}} \\ & \text{体效应系数:} \qquad \end{split}$$

V_{GC}的阈值电压

$$V_{\text{TH,GC}} = V_{\text{TH,GB}} - V_{\text{CB}} = \left| 2\Phi_{\text{F}} \right| + \Phi_{\text{MS}} - \frac{Q_{j0}}{C_{\text{ox}}} - \frac{Q_{\text{SS}}}{C_{\text{ox}}} - \frac{Q_{j} - Q_{j0}}{C_{\text{ox}}} - \frac{Q_{\text{SS}}}{C_{\text{ox}}} - \frac{Q_{\text{SS}}}{C_{\text{SS}}} - \frac{Q_{\text{SS}}}{C_{\text{SS$$

耗尽电容与栅氧电容之比:

$$\frac{C_{bc}}{C_{gc}} = \frac{C_j}{C_{ox}} = \frac{\gamma}{2\sqrt{|2\Phi_F| + V_{CB}}} = n - 1$$

MOST版图: Cox和Cj

MOST版图: Cox和Ci的值

$$C_{j} = \frac{\varepsilon_{si}}{t_{d}} \qquad t_{d} = \left[\frac{2\varepsilon_{si}(\left|2\Phi_{F}\right| + V_{DB})}{qN_{B}}\right]^{1/2}$$

$$\epsilon_{si} = 1 \text{ pF/cm}$$

 $\epsilon_{ox} = 0.34 \text{ pF/cm}$
 $N_B = 4 \times 10^{17} \text{ cm}^{-3}$
 $|2\Phi_F| = 0.6 \text{ V}$
 $q = 1.6 \times 10^{-19} \text{ C}$

例如: *L* = 0.35 µm *W*/*L* = 8 *V*_{DB} = 3.3 V

$$t_{d} = 0.11 \ \mu m \qquad \Box > \qquad C_{j} \approx 1 \times 10^{-7} \ \text{F/cm}^{2} = 1 \ \text{fF/}\mu m^{2}$$

$$t_{ox} = \frac{L_{min}}{50} \Box > t_{ox} = 7 \ \text{nm} \Box > C_{ox} = 5 \times 10^{-7} \ \text{F/cm}^{2} = 5 \ \text{fF/}\mu m^{2}$$

$$\frac{C_{j}}{C_{ox}} = n-1 \approx 0.2$$

N阱CMOS工艺

大信号工作原理: 沟道的形成

唐长文

方块电阻: (1)

n型半导体的电流密度: $J = \sigma E$ $\sigma = -qn_{\mu}\mu_{\mu}$ n_n 是单位体积中电子载流子的浓度, μ_n 为电子迁移率。 沟道中的电流: *I = JWH = -qn_µ_WHE* 其中W为沟道宽度, Unit volume H为沟道的厚度。 Current flow through unit volume Η

Current flowing through a unit volume.

方块电阻: (2)

沟道中的电场强度: $E = -\frac{dV}{dx}$ $qn_n\mu_nWHdV = Idx$ 沟道中的电流: $I = qn_n\mu_nWH\frac{dV}{dx}$ $\int_0^L Idx = \int_0^V qn_n\mu_nWHdV$ $I = \frac{qn_n\mu_nWH}{L}V$ 沟道总电阻: $R = \frac{V}{I} = \frac{L}{qn_n\mu_nWH} = R_n \frac{L}{W}$

其中方块电阻:

$$R_{\rm m} = \frac{1}{q n_{\rm n} \mu_{\rm n} H} = \frac{1}{\sigma H}$$

大信号工作原理: 线性区

I-V关系式: (1)

在MOS管中,沟道电荷密度n_n(x)不是常数,单位面积的电荷密度:

 $Q_{n}(x) = qn_{n}(x)H = C_{ox}\{V_{GC}(x) - V_{TH,GC}[V_{CB}(x)]\}$ $I_{D} = W\mu_{n}Q_{n}(x)\frac{dV_{CS}(x)}{dx}$

$$\int_{0}^{L} I_{\rm D} dx = \int_{0}^{V_{\rm DS}} W \mu_{\rm n} C_{\rm ox} \{ V_{\rm GC}(x) - V_{\rm TH,GC} [V_{\rm CB}(x)] \} dV_{\rm CS}(x)$$

$$V_{\text{GC}}(x) = V_{\text{GS}} - V_{\text{CS}}(x)$$
 $V_{\text{CB}}(x) = V_{\text{CS}}(x) + V_{\text{SB}}(x)$

$$V_{\text{TH,GC}}[V_{\text{CB}}(x)] = V_{\text{TH0}} + \gamma(\sqrt{|2\Phi_{\text{F}}| + V_{\text{CB}}(x)} - \sqrt{|2\Phi_{\text{F}}|})$$

I-V关系式: (2)

$$\begin{split} V_{\text{TH,GC}}[V_{\text{CB}}(x)] &= V_{\text{TH,GS}} + \gamma(\sqrt{|2\Phi_{\text{F}}| + V_{\text{CB}}(x)} - \sqrt{|2\Phi_{\text{F}}| + V_{\text{SB}}}) \\ &= V_{\text{TH,GS}} + \gamma \frac{V_{\text{CB}}(x) - V_{\text{SB}}}{\sqrt{|2\Phi_{\text{F}}| + V_{\text{CB}}(x)} + \sqrt{|2\Phi_{\text{F}}| + V_{\text{SB}}}} \\ &\approx V_{\text{TH,GS}} + \gamma \frac{V_{\text{CS}}(x)}{2\sqrt{|2\Phi_{\text{F}}| + V_{\text{SB}}}} = V_{\text{TH,GS}} + (n-1)V_{\text{CS}}(x) \\ \int_{0}^{L} I_{\text{D}} dx = \int_{0}^{V_{\text{DS}}} \mu_{\text{n}} W C_{\text{ox}} \{V_{\text{GS}} - V_{\text{TH,GS}} - nV_{\text{CS}}(x)\} dV_{\text{CS}}(x) \\ I_{\text{D}} = \mu_{\text{n}} C_{\text{ox}} \frac{W}{L} \left[(V_{\text{GS}} - V_{\text{TH,GS}})V_{\text{DS}} - \frac{nV_{\text{DS}}^{2}}{2} \right] \\ V_{\text{TH,GS}} = V_{\text{TH0}} + \gamma(\sqrt{|2\Phi_{\text{F}}| + V_{\text{SB}}} - \sqrt{|2\Phi_{\text{F}}|}) \\ n = 1.2 \sim 1.5 \qquad n = \frac{\gamma}{2\sqrt{|2\Phi_{\text{F}}| + V_{\text{SB}}}} + 1 \\ g_{\text{EL}X^{2}} \text{ My#gdegdHrgh/44} \end{aligned}$$

I-V关系式: (3)

The I_D versus V_{DS} curve for an ideal MOS transistor. For V_{DS} > V_{DSsat} , I_D is approximately constant.

大信号工作原理: 饱和区

复旦大学 射频集成电路设计研究小组

唐长文

饱和条件和I-V关系式

饱和条件:

$$V_{\rm GC}(x) - V_{\rm TH,GC}[V_{\rm CB}(x)] = V_{\rm GS} - V_{\rm TH,GS} - nV_{\rm CS}(x) = 0$$
$$V_{\rm CS} = \frac{V_{\rm GS} - V_{\rm TH,GS}}{n}$$
$$V_{\rm DSsat} = \frac{V_{\rm GS} - V_{\rm TH,GS}}{n} = V_{\rm eff}$$

I-V关系式:

$$I_{\rm D} = \frac{1}{2n} \mu_{\rm n} C_{\rm ox} \frac{W}{L} (V_{\rm GS} - V_{\rm TH,GS})^2$$

MOST的I_D与V_{GS}和V_{DS}的关系

MOST的V_{DS}与I_D的关系

沟道长度调制效应: (1)

饱和时的沟道长度:
$$L_{sat} = L - \Delta L$$

$$\Delta L = \left[\frac{2\varepsilon_{si}(|2\Phi_F| + V_{DS} - V_{DSsat})}{qN_B}\right]^{1/2} I_D = \frac{1}{2n}\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH,GS})^2$$

$$\frac{\partial I_{\rm D}}{\partial V_{\rm DS}} = \frac{\partial I_{\rm D}}{\partial L} \frac{\partial L}{\partial V_{\rm DS}} = -\frac{1}{2n} \mu_{\rm n} C_{\rm ox} \frac{W}{L^2} (V_{\rm GS} - V_{\rm TH,GS})^2 \frac{\partial L}{\partial V_{\rm DS}} = \frac{I_{\rm D}}{L} \frac{\partial L}{\partial V_{\rm DS}}$$

定义厄利电压
$$V_A$$
为: V_E 近似为常数
$$V_A = \frac{I_D}{\partial I_D / \partial V_{DS}} = L \left(\frac{\partial L}{\partial V_{DS}} \right)^{-1} = \left[\frac{q N_B (|2 \Phi_F| + V_{DS} - V_{DSsat})}{\varepsilon_{si}} \right]^{1/2} L$$

复旦大学 射频集成电路设计研究小组

唐长文

沟道长度调制效应: (2)

沟道长度调制系数:

$$\lambda = \frac{1}{V_{A}} = \frac{1}{V_{E}L}$$

沟道饱和电流:

$$I_{\rm D} = \frac{1}{2n} \mu_{\rm n} C_{\rm ox} \frac{W}{L} (V_{\rm GS} - V_{\rm TH,GS})^2 \left[1 + \lambda (V_{\rm DS} - V_{\rm DSsat}) \right]$$

沟道长度调制效应: (3)

 $I_{\rm D}$ versus $V_{\rm DS}$ for different values of $V_{\rm GS}$.

MOST的参数β、KP、C_{ox}等

 $KP_{\rm p} \approx 125 \ \mu \text{A/V}^2$ $KP_{\rm n} \approx 300 \ \mu \text{A/V}^2$ $C_{\rm ox} \approx 5 \times 10^{-7} \, {\rm F/cm^2}$ $\varepsilon_{si} = 1 \text{ pF/cm}$ $\varepsilon_{\rm ox} = 0.34 \text{ pF/cm}$ $t_{\rm ox} = 7 \, \rm nm$ $L = 0.35 \ \mu m$ $\mu_{\rm p} = 250 \ {\rm cm^2/Vs}$ $\mu_{\rm p} = 600 \ {\rm cm^2/Vs}$

大信号工作原理: 弱反型(亚阈值)区

The depletion region of subthreshold operation

p型衬底中源端和漏端的少数载流子浓度:

$$n_{p}(0) = n_{p0}e^{\frac{\Phi_{s}}{V_{T}}}$$
 $n_{p}(L) = n_{p0}e^{\frac{\Phi_{s}-V_{Ds}}{V_{T}}}$
其中, n_{p0} 是衬底中的平衡载流子浓度, Φ_{s} 是表面势。

I-V关系式: (1)

电子扩散产生的电流:

$$I_{\rm D} = qAD_{\rm n} \frac{n_{\rm p}(0) - n_{\rm p}(L)}{L} = \frac{W}{L} qt_{\rm d} D_{\rm n} n_{\rm p0} e^{\frac{\Phi_{\rm s}}{V_{\rm T}}} (1 - e^{-\frac{V_{\rm Ds}}{V_{\rm T}}})$$

其中D_n是电子的扩散系数,A是电流流过区域的截面 积,A=W×t_d,W为MOS管宽度,t_d为耗尽区深度。 在弱反型区,表面势正比于栅源电压:

复旦大学 射频集成电路设计研究小组

唐长文
I-V关系式: (2)

漏极电流:

$$I_{\rm D} = \frac{W}{L} t_{\rm d} q D_{\rm n} n_{\rm p0} e^{\frac{k_2}{V_{\rm T}}} e^{\frac{V_{\rm GS} - V_{\rm TH,GS}}{nV_{\rm T}}} (1 - e^{-\frac{V_{\rm DS}}{V_{\rm T}}})$$

$$I_{\rm D} = \frac{W}{L} I_{\rm t} e^{\frac{V_{\rm GS} - V_{\rm TH,GS}}{nV_{\rm T}}} (1 - e^{-\frac{V_{\rm DS}}{V_{\rm T}}})$$

其中, $I_{t} = t_{d} q D_{n} n_{p0} e^{\frac{k_{2}}{V_{T}}}$

亚阈值区的典型-V曲线

Drain current versus drain-source voltage in weak inversion.

复旦大学 射频集成电路设计研究小组

-01110-

亚阈值区和饱和区的典型--V曲线

Drain current versus gate-source voltage in weak inversion with a (a) square root (b) logrithmic scale.

复旦大学 射频集成电路设计研究小组

-01111-

大信号工作原理: 速度饱和区

An NMOS device in active mode (saturation) identifying the lateral and vertical electric field components.

在临界电场
$$E_{crit}$$
下的速度定义为散射极限速度 V_{scl} :
 $V_{scl} = \mu_n E_{crit}$
速度饱和时的电流:
 $I_D = WC_{ox}(V_{GS} - V_{TH,GS})V_{scl}$

三个工作区域的I-V曲线

小信号模

Effect of a small-signal input voltage applied to a NMOS transistor. (a) Circuit schematic. (b) Corresponding changes in carrier concentrations in the channel when the device is in the active region.

(a)

线性区栅跨导**g_{m,tri}:** 饱和区栅跨导**g_{m,si}:**

$$g_{\rm m,tri} = \mu_{\rm n} C_{\rm ox} rac{W}{L} V_{\rm DS}$$

$$g_{\rm m,si} = \frac{1}{n} \mu_{\rm n} C_{\rm ox} \frac{W}{L} (V_{\rm GS} - V_{\rm TH,GS}) \left[1 + \lambda (V_{\rm DS} - V_{\rm DSsat}) \right]$$

复旦大学 射频集成电路设计研究小组

$$g_{\rm m,si} = \frac{1}{n} \mu_{\rm n} C_{\rm ox} \frac{W}{L} (V_{\rm GS} - V_{\rm TH,GS}) = \sqrt{\frac{2}{n} \mu_{\rm n} C_{\rm ox} \frac{W}{L} I_{\rm D}} = \frac{2I_{\rm D}}{V_{\rm GS} - V_{\rm TH,GS}}$$

$$g_{m,wi} = \frac{W}{L} \frac{I_{t}}{nV_{T}} e^{\frac{V_{GS} - V_{TH,GS}}{nV_{T}}} (1 - e^{-\frac{V_{DS}}{V_{T}}}) = \frac{I_{D}}{nV_{T}} = \frac{I_{D}}{V_{T}} \frac{C_{ox}}{C_{j} + C_{ox}}$$

速度饱和区栅跨导g_{m,vs}:

$$g_{
m m,vs} = WC_{
m ox} v_{
m scl}$$

复旦大学 射频集成电路设计研究小组

唐长文

弱反型区体跨导gmb,wi:

$$g_{\rm mb,wi} = -\frac{1}{nV_{\rm T}} \frac{W}{L} I_{\rm t} e^{\frac{V_{\rm GS} - V_{\rm TH,GS}}{nV_{\rm T}}} (1 - e^{-\frac{V_{\rm DS}}{V_{\rm T}}}) \frac{\partial V_{\rm TH,GS}}{\partial V_{\rm BS}} = \frac{(n-1)I_{\rm D}}{nV_{\rm T}}$$
$$= (n-1)g_{\rm m,wi}$$

速度饱和区体跨导gmb,vs

$$g_{\rm mb,vs} = -WC_{\rm ox}V_{\rm scl} \frac{\partial V_{\rm TH,GS}}{\partial V_{\rm BS}} = (n-1)g_{\rm m,vs}$$

输出阻抗

$$\begin{split} r_{ds} &= \frac{\partial V_{DS}}{\partial I_{D}} = \left(\frac{\partial I_{D}}{\partial V_{DS}}\right)^{-1} \\ \text{线性区输出阻抗} r_{ds,tri} : \quad r_{ds,tri} = \frac{1}{\mu_{n}C_{ox}\frac{W}{L}(V_{GS} - V_{TH,GS} - nV_{DS})} \\ \text{饱和区输出阻抗} r_{ds,si} : \quad r_{ds,si} \approx \frac{V_{A}}{I_{D}} = \frac{1}{\lambda I_{D}} = \frac{V_{E}L}{I_{D}} \\ \text{弱反型区输出阻抗} r_{ds,wi} : \\ r_{ds,wi} = \frac{V_{T}}{\frac{W}{L}I_{t}e^{\frac{V_{GS} - V_{TH,GS}}{nV_{T}}}e^{-\frac{V_{DS}}{V_{T}}}} = \frac{V_{T}}{I_{D}}(e^{\frac{V_{DS}}{V_{T}}} - 1) \\ \text{速度饱和区输出阻抗} r_{ds,vs} : \frac{\partial I_{D}}{\partial V_{DS}} = 0 \qquad r_{ds,vs} \to \infty \end{split}$$

PMOST的小信号模

高频小信号模型: (1)

(a) A cross section of an n-channel MOS transistor showing the small-signal capacitances.(b) Top view of an NMOS 复旦大学 射频集成电路设计研究小组 -01121-

高频小信号模 (2)

The high-frequency, small-signal model for a MOS transistor.

栅寄生电容C_{as}和C_{gd}: (1)

Terminal capacitance in a NMOS

 $C_{\rm gs} = C_{\rm gd} = C_{\rm ov} = WL_{\rm ov}C_{\rm ox}$

交叠电容:
$$C_{abo} = 2W_{ov}LC_{ox}$$

栅寄生电容C_{gs}和C_{gd}: (2)

饱和区和速度饱和区,沟道中的总电荷和沟道电流:

$$C_{\rm gs} = C_{\rm gs}' + C_{\rm ov} = \frac{2}{3}C_{\rm ox}WL + C_{\rm ov}$$
 $C_{\rm gd} = C_{\rm ov}$

源/漏寄生结电容

 $C_{jsbt} = A_{s}C_{jsb} + P_{s}C_{jwsb}$ $C_{jdbt} = A_{b}C_{jdb} + P_{D}C_{jwdb}$ 其中 A_{s} 和 A_{D} 分别为源和漏的底部面积, P_{s} 和 P_{D} 分别 为源和漏的侧壁周长。

源衬和漏衬的面结电容: $C_{jsb} = \frac{C_j}{\sqrt{1 + \frac{V_{sb}}{\Phi_0}}}$ $C_{jdb} = \frac{C_j}{\sqrt{1 + \frac{V_{db}}{\Phi_0}}}$ 源衬和漏衬的边墙结电容:

背栅寄生电容C_{bs}和C_{bd}: (1)

线性区:

$$C_{\rm sb} = \frac{1}{2}C_{\rm bc} + C_{\rm jsbt}$$

饱和区和速度饱和区:

$$C_{sb} = \frac{2}{3}C_{bc} + C_{jsbt}$$
弱反型区:

$$C_{\rm db} = rac{1}{2}C_{\rm bc} + C_{
m jdbt}$$

$$C_{
m db} = C_{
m jdbt}$$

 $C_{\rm sb} = C_{\rm jsbt}$ $C_{\rm db} = C_{\rm jdbt}$

$$C_{\rm gb} = \frac{C_{\rm j}C_{\rm ox}}{C_{\rm j}+C_{\rm ox}} + C_{\rm gbo}$$

寄生电容与V_{GS}和V_{DS}的关系

Voltage dependence of C_{gs} and C_{gd} as a function of V_{GS} and V_{DS} . 复旦大学 射频集成电路设计研究小组 -01127-

NMOS管可变电容

NMOS varactor

复旦大学 射频集成电路设计研究小组

模拟评价指标:固有增益

A_I = g_m r_{ds}线性区:A_I =
$$\frac{V_{DS}}{V_{GS} - V_{TH,GS} - nV_{DS}}$$
饱和区:A_I = $\frac{2I_D}{V_{GS} - V_{TH,GS}} \frac{V_E L}{I_D} = \frac{2V_E L}{(V_{GS} - V_{TH,GS})}$ 弱反型区:A_I = $\frac{I_D}{nV_T} \frac{V_T}{I_D} (e^{\frac{V_{DS}}{V_T}} - 1) = \frac{e^{\frac{V_{DS}}{V_T}} - 1}{n}$

速度饱和区: $A \rightarrow \infty$!?

单MOS管增益Av

如果
$$V_{\text{GS}} - V_{\text{TH,GS}} = 0.2 \text{ V} \cdot V_{\text{E}}L \approx 10 \text{ V}$$
,则 $A_{\text{V}} \approx 100$ 。

	高增益	高速
$V_{\rm GS}$ – $V_{\rm TH,GS}$	低(0.2 V)	
L	大	

$$V_{GS} - V_{TH,GS}$$
 决定 g_m / I_D 值,能效比!

例题7: 单管放大器

用三个单管串联的结构,实现总增益为10,000的三级放大器。V_{GS} - V_{TH,GS} = 0.2 V。 使用先进的65 nm CMOS工艺(V_{En} = 4 V/µm),求最 小栅长。

模拟评价指标: 跨导电流比g_m/l_D

线性区:

饱和区:

$$\frac{g_{\rm m}}{I_{\rm D}} = \frac{1}{V_{\rm GS} - V_{\rm TH,GS} - \frac{n}{2}V_{\rm DS}}$$

$$\frac{g_{\rm m}}{I_{\rm D}} = \frac{2}{V_{\rm GS} - V_{\rm TH,GS}}$$

弱反型区:

$$\frac{g_{\rm m}}{I_{\rm D}} = \frac{1}{nV_{\rm T}}$$

速度饱和区:

$$\frac{g_{\rm m}}{I_{\rm D}} = \frac{1}{V_{\rm GS} - V_{\rm TH,GS}}$$

复旦大学 射频集成电路设计研究小组

I_D与V_{GS}的关系:尺寸WIL固定

跨导gm与Vgs的关系:尺寸WIL固定

饱和区和速度饱和区

wi与si转换点电压V_{GST,ws}

$$(V_{\rm GS} - V_{\rm TH,GS})_{\rm ws} = 2nV_{\rm T}$$

转换点电压V_{GST,ws}:与L无关

$$(V_{\rm GS} - V_{\rm TH,GS})_{\rm ws} = 2nV_{\rm T} \qquad I_{\rm Dws} = \frac{1}{2n}\mu_{\rm n}C_{\rm ox}\frac{W}{L}(2nV_{\rm T})^2$$

$$(V_{\rm GS} - V_{\rm TH,GS})_{\rm ws} = 2nV_{\rm T} \approx 70 \ {\rm mV}$$

1 4 /

$$\frac{1}{2n}\mu_{\rm n}C_{\rm ox}\approx 100\ \mu {\rm A/V}^2$$
$$\frac{1}{2n}\mu_{\rm p}C_{\rm ox}\approx 40\ \mu {\rm A/V}^2$$

例如, 当
$$\frac{W}{L}$$
=10时, NMOS的 $I_{D,ws}$ ≈5µA;
PMOS的 $I_{D,ws}$ ≈2µA。

wi与si的转换点

复旦大学 射频集成电路设计研究小组

wi与si转换点的能效比g_m/l_D

复旦大学 射频集成电路设计研究小组

wi与si转换点电流I_{D,ws}

$$I_{D,ws} = K' \frac{W}{L} V_{GST,ws}^2$$

$$i = \frac{I_D}{I_{D,ws}} = [\ln(1 + e^v)]^2 \quad 反型系数$$

$$v = \ln(e^{\sqrt{i}} - 1)$$

$$V_{GS} - V_{TH,GS} = V_{GST,ws} \ln(e^{\sqrt{i}} - 1) \qquad V_{GST,ws} = 2nV_{T} \approx 70 \text{ mV}$$

$$i = 1 \quad v = \ln(e^{\sqrt{1}} - 1) = 0.54 \qquad V_{GS} - V_{TH,GS} \approx 38 \text{ mV}$$

$$v = 1 \quad i = [\ln(1 + e^{1})]^{2} = 1.72$$

$$v = 0 \quad i = [\ln(1 + e^{0})]^{2} = 0.48$$

V_{GS}-V_{TH,GS}与反型系数 i 的关系

复旦大学 射频集成电路设计研究小组

wi与si之间的跨导g_m:归一化GM

归一化跨导GM与反型系数i的关系

复旦大学 射频集成电路设计研究小组

唐长文
电子漂移速度与横向电场的关系

plot) is the analytical approximation with $E_{crit} = 1.5 \times 10^6$ V/m and $\mu_n = 0.07$ m²/Vs.

漏源饱和电压 V_{DSsat}

Ratio of the minimum drain-source voltage required for operation in the active region to the overdrive versus the product of the critical field and the channel length. When $E_{crit} \rightarrow \infty$, velocity saturation is not a factor, and $V_{DSsat} \rightarrow (V_{GS} - V_{TH,GS})/n$, as expected. When velocity saturation is significant, $V_{DSsat} < (V_{GS} - V_{TH,GS})/n$.

单位面积的电荷密度:
$$Q_n(x) = C_{ox} \{V_{GS} - V_{TH,GS} - nV_{CS}(x)\}$$

 $I_D = WQ_n(x)V_d(x)$ $V_d(x) = \frac{\mu_n E(x)}{1 + E(x)/E_{crit}}$ $E(x) = -\frac{dV_{CS}(x)}{dx}$
 $I_D \left(1 + \frac{1}{E_{crit}} \frac{dV_{CS}(x)}{dx}\right) = W\mu_n C_{ox} \{V_{GS} - V_{TH,GS} - nV_{CS}(x)\} \frac{dV_{CS}(x)}{dx}$
 $\int_0^L I_D \left(1 + \frac{1}{E_{crit}} \frac{dV_{CS}(x)}{dx}\right) dx = \int_0^{V_{DS}} W\mu_n C_{ox} \{V_{GS} - V_{TH,GS} - nV_{CS}(x)\} dV_{CS}(x)$

$$I_{\rm D} = \frac{\mu_{\rm n} C_{\rm ox}}{1 + \frac{V_{\rm DS}}{E_{\rm crit} L}} \frac{W}{L} \left[(V_{\rm GS} - V_{\rm TH,GS}) V_{\rm DS} - \frac{n V_{\rm DS}^2}{2} \right]$$

复旦大学 射频集成电路设计研究小组

唐长文

饱和条件(1)

饱和条件:
$$\frac{\partial I_{\rm D}}{\partial V_{\rm DS}} = \mu_{\rm n} C_{\rm ox} \left[\frac{\left(1 + \frac{V_{\rm DS}}{E_{\rm crit}L}\right) (V_{\rm GS} - V_{\rm TH,GS} - \frac{nV_{\rm DS}}{2}) - \frac{(V_{\rm GS} - V_{\rm TH,GS})V_{\rm DS} - \frac{nV_{\rm DS}^2}{2}}{\left(1 + \frac{V_{\rm DS}}{E_{\rm crit}L}\right)^2} \right] = 0$$
$$\frac{nV_{\rm DS}^2}{E_{\rm crit}L} + 2nV_{\rm DS} - 2(V_{\rm GS} - V_{\rm TH,GS}) = 0$$
$$V_{\rm DSsat} = E_{\rm crit}L \left(\sqrt{1 + \frac{2(V_{\rm GS} - V_{\rm TH,GS})}{nE_{\rm crit}L}} - 1\right)$$

复旦大学 射频集成电路设计研究小组

-01148-

$$x = \frac{V_{GS} - V_{TH,GS}}{nE_{crit}L}$$
 $\sqrt{1 + 2x} = 1 + x - \frac{x^2}{2} + \cdots$

$$V_{\text{DSsat}} = \frac{V_{\text{GS}} - V_{\text{TH,GS}}}{n} \left(1 - \frac{V_{\text{GS}} - V_{\text{TH,GS}}}{2nE_{\text{crit}}L} + \cdots\right)$$

$$\frac{2(V_{\text{GS}} - V_{\text{TH,GS}})}{n} = E_{\text{crit}} L \left[\left(\frac{V_{\text{DSsat}}}{E_{\text{crit}}L} + 1 \right)^2 - 1 \right]$$

$$I_{\rm D} = \frac{\mu_{\rm n} C_{\rm ox}}{2n} \frac{W}{L} (n V_{\rm DSsat})^2$$

I-V关系式(2)

$$I_{\rm D} = \frac{\mu_{\rm n} C_{\rm ox}}{2n} \frac{W}{L} (V_{\rm GS} - V_{\rm TH,GS})^2 \left(1 - \frac{V_{\rm GS} - V_{\rm TH,GS}}{2nE_{\rm crit}L} + \cdots \right)^2$$
$$= \frac{\mu_{\rm n} C_{\rm ox}}{2n} \frac{W}{L} (V_{\rm GS} - V_{\rm TH,GS})^2 (1 - \frac{V_{\rm GS} - V_{\rm TH,GS}}{nE_{\rm crit}L} + \cdots)$$

$$I_{\rm D} \approx \frac{\mu_{\rm n} C_{\rm ox}}{2n \left(1 + \frac{V_{\rm GS} - V_{\rm TH,GS}}{n E_{\rm crit} L}\right)} \frac{W}{L} (V_{\rm GS} - V_{\rm TH,GS})^2$$

速度饱和区: R_{sx}

si与vs转换点电压V_{GST,sv}

$$\begin{split} I_{\text{D,si}} &= \frac{\mu_{\text{n}} C_{\text{ox}}}{2n} \frac{W}{L} (V_{\text{GS}} - V_{\text{TH,GS}})^2 \qquad I_{\text{D,vs}} = W C_{\text{ox}} v_{\text{scl}} (V_{\text{GS}} - V_{\text{TH,GS}}) \\ g_{\text{m,si}} &= 2 \frac{\mu_{\text{n}} C_{\text{ox}}}{2n} \frac{W}{L} (V_{\text{GS}} - V_{\text{TH,GS}}) \qquad g_{\text{m,vs}} = W C_{\text{ox}} v_{\text{scl}} \\ I_{\text{D,si}} = I_{\text{D,vs}} \qquad \text{or} \quad \frac{g_{\text{m,si}}}{I_{\text{D,si}}} = \frac{g_{\text{m,vs}}}{I_{\text{D,vs}}} \\ (V_{\text{GS}} - V_{\text{TH,GS}})_{\text{sv}} = 2nL \frac{V_{\text{scl}}}{\mu_{\text{n}}} \approx 5L \qquad I_{\text{D,sv}} = \frac{2nWLC_{\text{ox}} v_{\text{scl}}^2}{\mu_{\text{n}}} \\ \text{ IE EE \mp 沟 \ if \ K \underline{\mathcal{E}} L! \ I \ I \qquad V_{\text{scl}} = 10^7 \ \text{cm/s}} \\ n = 1.4 \\ \stackrel{\text{ If } L = 0.13 \ \mu \text{m}}{\text{ H}} \text{ H}, \ (V_{\text{GS}} - V_{\text{TH,GS}})_{\text{sv}} \approx 0.65 \ \text{V} \quad \mu_{\text{n}} = 500 \ \text{cm}^2/\text{Vs} \\ \end{array}$$

si与vs转换点电流/_{D,sv}

$$\begin{split} I_{\text{D,sv}} &\approx \frac{\mu_{\text{n}} C_{\text{ox}}}{2n} \frac{W}{L} (2nL \frac{v_{\text{scl}}}{\mu_{\text{n}}})^2 \approx 100 n \varepsilon_{\text{ox}} W \frac{v_{\text{scl}}^2}{\mu_{\text{n}}} \\ C_{\text{ox}} &= \frac{\varepsilon_{\text{ox}}}{t_{\text{ox}}} \quad t_{\text{ox}} = \frac{L_{\text{min}}}{50} \\ \frac{I_{\text{D,sv}}}{W} &\approx 10 \text{ A/cm} \end{split} \qquad \begin{aligned} \varepsilon_{\text{ox}} &= 0.34 \text{ pF/cm} \\ v_{\text{sat}} &= 10^7 \text{ cm/s} \\ n &= 1.4 \\ \mu_{\text{n}} &= 500 \text{ cm}^2/\text{Vs} \end{aligned}$$

当
$$W = 1 \mu m$$
, $L_{min} = 0.13 \mu m$ 时, $I_{D,sv} \approx 1 m A$.

si与vs转换点电压V_{GST,sv}

$$\begin{split} I_{\rm D,si} &= \frac{\mu_{\rm n} C_{\rm ox}}{2n} \frac{W}{L} (V_{\rm GS} - V_{\rm TH,GS})^2 \qquad I_{\rm D,vs} = W C_{\rm ox} v_{\rm scl} (V_{\rm GS} - V_{\rm TH,GS}) \\ g_{\rm m,si} &= 2 \frac{\mu_{\rm n} C_{\rm ox}}{2n} \frac{W}{L} (V_{\rm GS} - V_{\rm TH,GS}) \qquad g_{\rm m,vs} = W C_{\rm ox} v_{\rm scl} \\ g_{\rm m,si} &= g_{\rm m,vs} \\ \hline & I_{\rm D,sv} = \frac{n W L C_{\rm ox} v_{\rm scl}^2}{2\mu_{\rm n}} \\ \hline & I_{\rm D,sv} = \frac{n W L C_{\rm ox} v_{\rm scl}^2}{2\mu_{\rm n}} \\ \hline & I_{\rm E} \kappa \mp \dot{\gamma} \vec{a} \notin \underline{k} \underline{\ell} \underline{L} \underline{l} \underline{l} \underline{l} \qquad v_{\rm scl} = 10^7 \text{ cm/s} \\ & n = 1.4 \\ & \stackrel{\text{ If } L}{=} 0.13 \ \mu \text{m} \ \text{ Ift}, \ (V_{\rm GS} - V_{\rm TH,GS})_{\rm sv} \approx 0.325 \ \text{V} \ \mu_{\rm n} = 500 \ \text{cm}^2 / \text{Vs} \\ \hline & g_{\rm E} \chi \underline{\gamma} & g_{\rm S} \chi \underline{\eta} = 0.13 \ \mu \text{m} \ \text{Ift}, \ (V_{\rm GS} - V_{\rm TH,GS})_{\rm sv} \approx 0.325 \ \text{V} \ \mu_{\rm n} = 500 \ \text{cm}^2 / \text{Vs} \\ \hline & g_{\rm E} \chi \underline{\gamma} & g_{\rm S} \chi \underline{\eta} = 0.13 \ \mu \text{m} \ \text{Ift}, \ (V_{\rm GS} - V_{\rm TH,GS})_{\rm sv} \approx 0.325 \ \text{V} \ \mu_{\rm n} = 500 \ \text{cm}^2 / \text{Vs} \\ \hline & g_{\rm E} \chi \underline{\gamma} & g_{\rm S} \chi \underline{\eta} = 0.13 \ \mu \text{m} \ \text{Ift}, \ (V_{\rm GS} - V_{\rm TH,GS})_{\rm sv} \approx 0.325 \ \text{V} \ \mu_{\rm n} = 500 \ \text{cm}^2 / \text{Vs} \\ \hline & g_{\rm E} \chi \underline{\gamma} & g_{\rm S} \chi \underline{\eta} = 0.13 \ \mu \text{m} \ \mu_{\rm n} \ \eta_{\rm S} = 0.13 \ \mu \text{m} \ \eta_{\rm n} \ \eta_{\rm S} \ \eta_{\rm S} \chi \underline{\eta} = 0.13 \ \mu \text{M} \ \eta_{\rm N} \ \eta_{\rm N}$$

复旦大学 射频集成电路设计研究小组

-01155-

速度饱和区? 饱和区?

平方率饱和区VGST的有效范围

在饱和区MOST的工作范围

练习2:相同工艺下,不同L值

= Ct

MOST的I_D、g_m和g_m/I_D

摘要:关于 I_D 、 $g_m n g_m / I_D$ 的公式

Ref.: Laker, Sansen: Design of analog ..., MacGrawHill 1994; Table 1-4 复旦大学 射频集成电路设计研究小组 -01161-

 $g_{\rm m} = WC_{\rm ox}V_{\rm scl}$

唐长文

当*i*_{ds} = *i*_{gs}时,MOST的特征频率*f*_T

$$C_{gs} = \frac{2}{3}WLC_{ox}$$
 $g_{m} = 2K'\frac{W}{L}(V_{GS} - V_{TH,GS})$ $K' = \frac{\mu C_{ox}}{2n}$

$$f_{\rm T} = \frac{g_{\rm m}}{2\pi C_{\rm gs}} = \frac{1}{2\pi} \frac{3}{2n} \frac{\mu}{L^2} (V_{\rm GS} - V_{\rm TH,GS}) \frac{1}{2\pi \cdot L/v_{\rm scl}} = \frac{v_{\rm scl}}{2\pi L}$$

高速设计

	高增益	高速
$V_{\rm GS}$ – $V_{\rm TH,GS}$	低(0.2 V)	高(0.5 V)
L	大	ン

$$V_{GS} - V_{TH,GS}$$
 决定 g_m / I_D 值,能效比!

最大特征频率f_r与沟道长度L的关系

饱和区和速度饱和区的特征频率f_r

$$\begin{split} f_{\rm T} &= \frac{g_{\rm m}}{2\pi C_{\rm gs}} \quad C_{\rm gs} = kW \qquad k = 2 \ {\rm fF}/{\rm \mu m} = 2 \times 10^{-11} \ {\rm F/cm} \\ g_{\rm m} &= \frac{W}{L_{\rm min}} \frac{17 \times 10^{-5}}{1 + 2.8 \times 10^4 L_{\rm min}/V_{\rm GST}} \quad L$$
的单位为cm
$$\hline f_{\rm T} &= \frac{1}{L_{\rm min}} \frac{13.5}{1 + 2.8 L_{\rm min}/V_{\rm GST}} \ {\rm GHz} \qquad L$$
的单位为µm
当 V_{\rm GST}=0.2 V, L_{\rm min}<65 nm;

或 V_{GST}=0.5 V, L_{min}<0.18 µm时, 晶体管进入速度饱和区

饱和区和弱反型区的特征频率f_r

特征频率ff与反型系数i的关系

练习3: MOST的特征频率f_r?

$$f_{T} = \frac{1}{2\pi} \frac{3}{2n} \frac{\mu}{L_{min}^{2}} (V_{GS} - V_{TH,GS}) = \frac{3}{2} \frac{\sqrt{K' I_{D}}}{\pi C_{ox} \sqrt{W L_{min}^{3}}} = \frac{3}{2} \frac{I_{D}}{\pi W L_{min} C_{ox} (V_{GS} - V_{TH,GS})}$$

$$\int f_{T} \qquad \int f_{T} \qquad \int f_{T} \qquad \int f_{D} \uparrow V_{GS} \uparrow \qquad \int f_{T} \qquad \int f_{D} \uparrow V_{GS} \uparrow \qquad \int f_{T} \qquad \int f$$

"单页" MOST型晶体管模型

$$\begin{split} & K' = \frac{\mu C_{ox}}{2n} & V_{GS} - V_{T} \approx 0.2 \text{ V} \\ & K'_{n} \approx 100 \ \mu \text{A/V}^{2} \\ & K'_{p} \approx 40 \ \mu \text{A/V}^{2} \\ & K$$

MOS型与BJT型晶体管的比较

表2-8 MOS型与BJT型晶体管的比较

Specification	MOST	Bipolar t	ransistor
1. / _{IN}	0	I _c /β	β?
R_{IN}	∞	$r_{\rm m} + r_{\rm B}$	
2. V _{DSsat} N	$V_{\rm GS} - V_{\rm TH,GS} = \sqrt{\frac{I_{\rm D}}{\kappa' W/L}}$	- few V _τ	
$3.\frac{g_{\rm m}}{l}$	wi $\frac{1}{nV_{T}}$	$\frac{1}{V_{T}}$	$n = 1 + \frac{C_j}{C_{ox}}$
-	si $\frac{2}{V_{GS} - V_{TH,GS}}$	$\frac{1}{V_{T}}$	46 X
٧	/S $\frac{1}{V_{GS} - V_{TH,GS}}$	$\frac{1}{V_{T}}$	
	Re	ef.: Laker Sansen ⁻	Table 2-8

复旦大学 射频集成电路设计研究小组

-01170-

唐长文

MOST-BJT的比较:最小V_{DS}

MOST-BJT的比较:能效比g_m/l_D

gm的设计流程

$$I_{\rm D} = K' \frac{W}{L} (V_{\rm GS} - V_{\rm TH,GS})^2$$

$$g_{\rm m} = 2K' \frac{W}{L} (V_{\rm GS} - V_{\rm TH,GS}) = 2\sqrt{K' \frac{W}{L} I_{\rm D}} = \frac{2I_{\rm D}}{V_{\rm GS} - V_{\rm TH,GS}}$$

MOS型与BJT型晶体管的比较

表2-8 MOS型与BJT型晶体管的比较

Specification	MOST	Bipolar transist	tor
4.Design planning	$\frac{W}{I}$, $V_{\rm GS} - V_{\rm TH,GS}$	V _T	
5. I-range	1 decade	7 decade	
6. Max <i>f</i> _T	low / C_{GS} , C_{GD}	$m{C}_{ m j},\ m{C}_{ m \mu}$	
	high / v _{scl} /L	$V_{\rm scl}/W_{\rm B}$	
7. Noise $\overline{dv_i^2}$	Therm. $4kT(\frac{2/3}{g_{m}}+R_{G})$	$4kT(\frac{1/2}{g_{\rm m}}+R_{\rm B})$	
	1/f 10X		
8. Offset	10X	$v_{\rm scl} \approx 10^7 {\rm cm/s}$	
1十学 副杨佳武中攻沿计研究小组	Ref.: Laker Sansen Table 2-8		

复旦大学 射频集成电路设计研究小组

-01174-

关于晶体管模型的参考书目

 Y. Tsividis, "Operation and Modeling of the MOS Transistor", McGraw-Hill, 1987, Oxford, 2004/2011.

关于模拟电路设计的参考书目

- P. R. Gray, P. J. Hurst, S. H. Lewis, R. G. Meyer, "Analysis and Design of Analog Integrated Circuits", John Wiley & Sons, 1977/84/93/2001/09
- T. C. Carusone, D. A. Johns, K. W. Martin, "Analog Integrated circuit design", Jonh Wiley & Sons, 1997/2012.
- P. E. Allen, D. R. Holberg, "CMOS Analog Circuit Design", Holt, Rinehart and Winston. 1987, Oxford Press 2002/12.
- B. Razavi, "Design of Analog CMOS Integrated Circuits", McGraw Hill, 2001.
- K. R. Laker, W. Sansen, "Design of Analog Integrated Circuits and Systems", McGraw Hill, 1994.
- R. Gregorian, G. C. Temes, "Analog MOS Integrated Circuits for Signal Processing", Jonh Wiley & Sons, 1986.
- W. M. C. Sansen, "Analog Design Essentials," Springer 2006.