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CIRCUIT INTUITIONS
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“The Reciprocity Theorem”

Welcome to the 38th article in the 
“Circuit Intuitions” column series. 
As the title suggests, each article 
provides insights and intuitions into 
circuit design and analysis. These 
articles are aimed at undergraduate 
students but may serve the interests 
of other readers as well. If you read 
this article, I would appreciate your 
comments and feedback, as well as 
your requests and suggestions for 
future articles in this series. Please 
e-mail me your comments at ali@
ece.utoronto.ca.

In the previous article in this 
series [1], we explained Tellegen’s 
theorem and how it relates to the 
conservation of energy principle. 
In this article, we explain the reci-
procity theorem, another gem in the 
field of circuit theory, and provide 
an intuitive understanding for it.

The Reciprocity Theorem
Consider a linear time-invariant two-
port network consisting solely of 
resistors, with no other elements pres-
ent. Let us number the two ports 
by 1 and 2 as shown in Figure 1(a). 
The reciprocity theorem states that 
if a voltage source is applied to 
either port 1 or 2 of this network, it 
will produce the same short circuit 
current in the other port. That is, 

,i i2 1sc sc=  as shown in Figure 1(b) and 
(c). In other words, the forward and 
the reverse short circuit transcon-
ductances of the two-port network, 
which we define by /y i vf 2 0sc=   

and / ,y i vr 1 0sc=  respectively, are 
identical. The reciprocity theorem 
is trivial when the two-port net-
work is symmetric, that is, when the 
two ports can be fully swapped. An 
example of a symmetric network is 
where the left half of the network is 
a mirror image of its right half. Sur-
prisingly, however, the reciprocity 
theorem holds even when the net-
work is not symmetric. One exam-
ple of this is shown in Figure  2(a), 
where the network consists of three 
simple resistors with the values 
shown, connected in a T configuration 
(also known as a Y configuration). 
This circuit is asymmetric simply 
because the resistors connected to 
the left and right ports are differ-
ent. In fact, because of this asymme-
try, the resistance seen from port 1  
when port 2 is left open is ,25X  
whereas the resistance seen from 

port 2 when port 1 is left open is 
20 X, implying the two ports do not 
have the same properties and can-
not be swapped. However, one can 
easily verify that for this circuit, 

/( ).y y 1 95f r X= =

As a second example, consider 
the circuit shown in Figure 2(b).  
This circuit consists of five resis-
tors of various values. Again, the  
circuit is not symmetric, but the rec-
iprocity theorem claims that the 
forward and reverse transconduc-
tances for this circuit are identical. 
The reader is encouraged to verify this  
for themselves. 

So, why is a resistive network 
reciprocal, even when the circuit 
is asymmetric? You are encouraged 
to pause and ponder this and see 
whether you can come up with your 
own intuition. If you find an intu-
ition that is different from what this 
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FIGURE 1: (a) A resistive two-port network 
and a setup to determine its (b) forward and 
(c) reverse short circuit transconductances. 
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FIGURE 2: (a) An example asymmetric 
resistive network to test its reciprocity by 
determining if it has equal forward and 
reverse transconductances. (b) A second 
example including five resistors. 
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article provides, please share it with 
me by e-mail.

The reciprocity theorem can be 
proven easily [2] with the help of 
Tellegen’s theorem, covered in the 
previous article in this series [1]. How-
ever, a proof based on Tellegen’s the-
orem might not offer much intuition 
as to why the reciprocity theorem 
holds and why it makes sense.

To build an intuition, consider the 
P circuit configuration (also known 
as the D  configuration) as shown in 
Figure 3(a), which consists of R1  and 
R2  at ports 1 and 2, respectively, 
and RX  connecting the two ports. It 
is easy to see that for this circuit, 
the short circuit transconductance 
is / ,R1 X  both in the forward direc-
tion, as shown in Figure 3(b), and 
in reverse, as shown in Figure 3(c). 
This is because by applying a volt-
age source to one port and shorting 
the other, we render R1  and R2  inef-
fective, making the circuit equiva-
lent to a single resistor RX . Since a 
single resistor is reciprocal (there is 
no distinction between the two ter-
minals of a resistor), the P circuit is 
intuitively reciprocal.

We now show, through an exam-
ple, that any resistive circuit can be 
turned into a P circuit by a series 

of T Y" "P D^ h and T Y" "P D^ h 
transformations [2] and by replac-
ing any parallel and series resistors 
with their equivalent resistors.

We have redrawn the circuit of 
Figure 2(b) in Figure 4(a) to high-
light the three resistors that form 
a T circuit. We then transform this 
T circuit into a P circuit as shown 
in Figure 4(b). Next, we combine 
the two 30 X parallel resistors into 
a single resistor to form another T 
circuit on the right (not shown), fol-
lowed by another T to P transforma-
tion, to arrive at the P circuit shown 
in Figure 4(c). We observe that the 
equivalent resistance connecting 
the two ports is ,R 60X X=  yielding 
identical forward and reverse trans-
conductances of / .1 60X^ h  

To recap, every resistive network 
has an equivalent P circuit with a 
conductance of /R1 X  (or a resistance 
of RX ) connecting the two ports. 
This unique conductance represents 
both the forward and the reverse 
short circuit transconductances of 

the resistive network. This com-
pletes our intuitive proof of the reci-
procity theorem.

What we have discussed so far 
is only one of the three statements 
associated with the reciprocity theo-
rem [2]. A second statement of this 
theorem claims that if a current 
source i0  is applied to either port 1 
or 2 of a resistive network, it will pro-
duce the same open circuit voltage at 
the other port. That is, ,v v2 1OC OC=  
as shown in Figure 5(a) and (b). In 
other words, the forward and the 
reverse open circuit transimped-
ances of the two-port network, 
defined respectively by /z v if 2 0OC=  
and / ,z v ir 1 0OC=  are identical.

To see this intuitively, we rep-
resent a resistive network by its 
T-equivalent circuit as shown in Fig-
ure 5(c). In this representation, the 
forward and reverse transimped-
ances are simply captured by RX . 
Notably, when a current source is 
applied to, say, port 1, while port 2  
is kept open, R1  and R2  have no 
impact on the transimpedance; only 
RX  does.

A third statement of the reciproc-
ity theorem claims that the short 
circuit current gain in one direction 
is equal to the open circuit voltage 
gain in the other direction. Figure 6 
captures this claim by showing the 
setups for the forward short circuit 
current gain /ih if 2 0SC=^ h and the 
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FIGURE 3: (a) A Π circuit represented by 
three resistors. (b) A setup to determine 
its forward transconductance will only 
see RX as R1 is in parallel with a voltage 
source, and R2 is shorted. (c) A setup to 
determine its reverse transconductance 
where R2 is in parallel with a voltage 
source and R1 is shorted. In both cases, the 
transconductance is determined by RX only. 
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FIGURE 5: A test setup to determine a 
resistive network’s (a) forward and (b) 
reverse transimpedances. (c) A T-circuit 
equivalent of the resistive network.
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FIGURE 4: Any resistive network such as 
the one shown in (a) has an equivalent 
Π circuit as shown in (c), which can be 
obtained by a sequence of T " Π [such as 
from (a) to (b)] and Π " T transformations 
and by replacing series and parallel 
resistors with their equivalent resistors.
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reverse open circuit voltage gain 
/ .h v vr 1 0OC=^ h

Unlike the first two statements, 
this last statement includes a cur-
rent gain and a voltage gain, which 
cannot be represented by a single 
resistance or conductance. Rather, 
they need to be represented by a 
ratio of two resistances or two con-
ductances. If we use the  equivalent 
circuit as in Figure 3(a) for our two-
port network, we can easily verify 
that the forward current and the 
reverse voltage gains are identical 
and equal to / ,R RR X1 1 +^ h  whereas 
the forward voltage and the reverse 
current gains are identical and 
equal to / ,R R RX2 2 +^ h  providing an 
intuitive understanding of why this 
last statement of the reciprocity 
makes sense. Similarly, if we use the  
T equivalent circuit as in Figure 5(c),  
we can verify that both the for-
ward current and the reserve voltage 

gains are captured by / ,R R RX X2 +^ h  
whereas the forward voltage and the 
reverse current gains are captured 
by / .R R RXX 1 +^ h

Finally, we note that in all three 
statements of the reciprocity theo-
rem, we rely on representing a resis-
tive network by three parameters 
only (say the three resistances in a 
P or T circuit), instead of the four 
parameters needed in general to 
model a two-port network. The 
readers familiar with y param-
eters, z parameters, or h parameters 
may recognize that for resistive 
networks, thanks to reciprocity, 

, ,y y z z21 12 21 12= =  and ,h h21 12=-  
reducing the number of parameters 
needed to model these networks  
to three.

Before we end this article, we 
would like to answer the following 
two questions that may be on your 
mind: 1) Is the reciprocity theorem 
valid for all linear-time invariant 
networks? 2) What is a formal proof 
for the reciprocity theorem?
1)	The reciprocity theorem is valid 

only for a subset of linear time-
invariant two-port networks that 
consist of resistors, inductors, 
capacitors, coupled inductors, 
and transformers, and it may not 
be valid for two-port networks 
that include dependent sources, 
independent sources, gyrators, 
or when a capacitor or an induc-

tor in the circuit has a nonzero 
initial condition [2]. Also, when 
the circuit includes capacitors 
and inductors, the reciprocity 
theorem must be generalized to 
use voltage and current phasors 
(as a function of frequency ~  or 
the Laplace transform parameter 
s) in its statements.

2)	 For a comprehensive treatment of 
the reciprocity theorem and its 
proof based on Tellegen’s theorem, 
we refer the readers to a classical 
textbook on circuit theory [2].
In summary, we have shown intu-

itively that any two-port resistive 
network is reciprocal in a sense that 
it exhibits the same forward and 
reverse short circuit transconduc-
tances and the same forward and 
reverse open circuit transimped-
ances. Further, we have shown that 
the open circuit voltage gain in one 
direction is equal to the short circuit 
current gain in the other direction. 
We based our intuitive understand-
ing on the fact that any resistive net-
work can be reduced to both a P and 
a T circuit, and we demonstrated 
this through some examples.
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FIGURE 6: A test setup to determine a 
resistive network’s (a) forward current gain 
(iSC2/i0) and (b) reverse voltage gain (v0C1/v0).

EDITOR’S NOTE (continued from p. 4)

of luminaries and solid-state circuit 
techniques and directions.

We hope you enjoy reading IEEE Solid-
State Circuits Magazine. Please send 
comments to me at lbelosto@ieee.org.
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